精英家教网 > 高中数学 > 题目详情
一个袋子中有大小相同的2个红球和3个黑球,从袋中随机地取球,取到每个球的可能性是相同的,设取到一个红球得2分,取到一个黑球得1分。
(1)若从袋子中一次取出3个球,求得4分的概率;
(2)若从袋子中每次摸出一个球,看清颜色后放回,连续摸2次,求所得分数的分布列及数学期望。
(1);(2).
本试题主要是考查了古典概型的概率的运用,以及分布列的求解和数学期望值的运算。题解题意是解决试题的关键,弄清楚事件的概念,选择合适的公式进行。
解:(1)从袋中一次取出3个球得4分的概率为


2
3
4
P



练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
某医院有7名医生(4男3女), 从7名医生中选3人组成医疗小组下乡巡诊.
(1)设所选3人中女医生的人数为,求的分布列及数学期望;
(2)现已知4名男医生中张强已被选中,求3名女医生中李莉也被选中的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某同学参加3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为(),且不同课程是否取得优秀成绩相互独立.记ξ为该生取得优秀成绩的课程数,其分布列为
ξ
0
1
2
3



b

(Ⅰ)求该生至少有1门课程取得优秀成绩的概率;
(Ⅱ)求的值;
(Ⅲ)求数学期望ξ.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

张先生家住H小区,他在C科技园区工作,从家开车到公司上班有L1L2两条路线(如图),L1路线上有A1,A2,A3三个路口,各路口遇到红灯的概率均为L2路线上有B1B2两个路口,各路口遇到红灯的概率依次为
(Ⅰ)若走L1路线,求最多遇到1次红灯的概率;
(Ⅱ)若走L2路线,求遇到红灯次数的数学期望;
(Ⅲ)按照“平均遇到红灯次数最少”的要求,请你
帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知随机变量ξ+η=8,若ξ~B(10,0.6),则Eη,Dη分别是(  )
A.6和2.4B.2和2.4C.2和5.6D.6和5.6

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)张师傅驾车从公司开往火车站,途径4个交通岗,这4个交通岗将公司到火车站分成5个时段,每个时段的驾车时间都是3分钟,如果遇到红灯要停留1分钟。假设他在各交通岗遇到红灯是相互独立的,并且概率都是
(1)求张师傅此行程时间不小于16分钟的概率;
(2)记张师傅此行程所需时间为Y分钟,求Y的分布列和均值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

符合下列三个条件之一,某名牌大学就可录取:
①获国家高中数学联赛一等奖(保送录取,联赛一等奖从省高中数学竞赛优胜者中考试选拔);
②自主招生考试通过并且高考分数达到一本分数线(只有省高中数学竞赛优胜者才具备自主招生考试资格);
③高考分数达到该大学录取分数线(该大学录取分数线高于一本分数线).
某高中一名高二数学尖子生准备报考该大学,他计划:若获国家高中数学联赛一等奖,则保送录取;若未被保送录取,则再按条件②、条件③的顺序依次参加考试.
已知这名同学获省高中数学竞赛优胜奖的概率是0.9,通过联赛一等奖选拔考试的概率是0.5,通过自主招生考试的概率是0.8,高考分数达到一本分数线的概率是0.6,高考分数达到该大学录取分数线的概率是0.3.
(I)求这名同学参加考试次数的分布列及数学期望;
(II)求这名同学被该大学录取的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是随机变量,且,则等于 (    )
A. 0.4B. 4C. 40D. 400

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(本小题满分12分)
根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立。
(Ⅰ)求该地1为车主至少购买甲、乙两种保险中的1种的概率;
Ⅱ)X表示该地的100为车主中,甲、乙两种保险都不购买的车主数,求X的期望。

查看答案和解析>>

同步练习册答案