精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.
(Ⅰ)求a、b的值;
(Ⅱ)求函数f(x)在区间[-2,2]上的最大值和最小值.

分析 (Ⅰ)f'(x)=3ax2+2bx-3,依题意,f'(1)=f'(-1)=0,解出即可.
(Ⅱ)f(x)=x3-3x,f'(x)=3x2-3=3(x+1)(x-1).利用导数研究其在区间[-2,2]的单调性极值与最值即可得出.

解答 解:(Ⅰ)f'(x)=3ax2+2bx-3,
依题意,f'(1)=f'(-1)=0,即$\left\{\begin{array}{l}{3a+2b-3=0}\\{3a-2b-3=0}\end{array}\right.$,
解得a=1,b=0.
(Ⅱ)f(x)=x3-3x,f'(x)=3x2-3=3(x+1)(x-1).
令f'(x)=0,得x=-1,x=1.
若x∈[-2,-1)∪(1,2],则f'(x)>0,故f(x)在[-2,-1),(1,2)上是增函数,
若x∈(-1,1),则f'(x)<0,故f(x)在(-1,1)上是减函数.
∴f(-1)=2是极大值;f(1)=-2是极小值;
又f(2)=2,f(-2)=-2.
∴最大值为2,最小值为-2.

点评 本题考查了利用导数研究函数的单调性极值与最值,考查了推理能力和计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{m}$=(a-sinθ,-$\frac{1}{2}$),$\overrightarrow{n}$=($\frac{1}{2}$,cosθ).
(1)当a=0,且$\overrightarrow{m}$∥$\overrightarrow{n}$时,求sin2θ的值;
(2)当a=$\frac{\sqrt{2}}{2}$,且$\overrightarrow{m}$⊥$\overrightarrow{n}$时,求cos2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知整数n≥4,集合M={1,2,3,…,n}的所有3个元素的子集记为A1,A2,…,${A_{C_n^3}}$.当n=5时,求集合A1,A2,…,${A_{C_5^3}}$中所有元素的和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.直线x-2y=2与3x-y+6=0之间的夹角为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=Acos(ωx+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则函数f(x)的解析式为(  )
A.y=2cos($\frac{x}{2}$-$\frac{π}{4}$)+4B.y=2cos($\frac{x}{2}$+$\frac{π}{4}$)+4C.y=4cos($\frac{x}{2}$-$\frac{π}{4}$)+2D.y=4cos($\frac{x}{2}$+$\frac{π}{4}$)+2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图所示的流程图是将一系列指令和问题用框图的形式排列而成的.阅读下面的流程图,并回答下列问题.若b>c>a,则输出的数是b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求函数f(x)=$\frac{1}{2}$x+sinx在区间[0,2π]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\frac{2a+1}{a}-\frac{1}{{{a^2}x}}$,常数a>0,当0<m<n,f(x)的定义域和值域都是[m,n],则实数a的取值范围{a|a>$\frac{1}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知sinα=-$\frac{1}{3}$,且α∈(-$\frac{π}{2}$,$\frac{π}{2}}$),则tanα=(  )
A.$\frac{{\sqrt{2}}}{4}$B.$-\frac{{\sqrt{2}}}{4}$C.$±\frac{{\sqrt{2}}}{4}$D.$-\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

同步练习册答案