精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知曲线的方程是).

(1)当时,求曲线围成的区域的面积;

(2)若直线与曲线交于轴上方的两点,且,求点到直线距离的最小值.

【答案】(1)4;(2)

【解析】

1)当时,曲线的方程是,对绝对值内的数进行讨论,得到四条直线围成一个菱形,并求出面积为4;

2)对进行讨论,化简曲线方程,并与直线方程联立,求出点的坐标,由得到的关系,再利用点到直线的距离公式求出,从而求得.

(1)当时,曲线的方程是

时,,当时,

时,方程等价于

时,方程等价于

时,方程等价于

时,方程等价于

曲线围成的区域为菱形,其面积为

(2)当时,有

联立直线可得

时,有

联立直线可得

可得

即有

化为

到直线距离

由题意可得,即

可得

可得当,即时,点到直线距离取得最小值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂生产甲、乙两种产品所得利润分别为(万元),它们与投入资金(万元)的关系有如下公式:,今将200万元资金投入生产甲、乙两种产品,并要求对甲、乙两种产品的投入资金都不低于25万元.

(Ⅰ)设对乙种产品投入资金(万元),求总利润(万元)关于的函数关系式及其定义域;

(Ⅱ)如何分配投入资金,才能使总利润最大,并求出最大总利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2009四川卷文)设矩形的长为,宽为,其比满足,这种矩形给人以美感,称为黄金矩形。黄金矩形常应用于工艺品设计中。下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:

甲批次:0.598 0.625 0.628 0.595 0.639

乙批次:0.618 0.613 0.592 0.622 0.620

根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是

A. 甲批次的总体平均数与标准值更接近

B. 乙批次的总体平均数与标准值更接近

C. 两个批次总体平均数与标准值接近程度相同

D. 两个批次总体平均数与标准值接近程度不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形, , .

(Ⅰ)若的中点,求证: 平面

(Ⅱ)若 ,求三棱锥的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(1)求这4个人中恰有2人去参加甲游戏的概率;
(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;
(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X﹣Y|,求随机变量ξ的分布列与数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中,,DAE的中点,C是线段BE上的一点,且,将沿AB折起使得二面角是直二面角.

(l)求证:CD平面PAB;

(2)求直线PE与平面PCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦点在轴上,中心在坐标原点,抛物线的焦点在轴上,顶点在坐标原点,在上各取两个点,将其坐标记录于表格中:

(1)求的标准方程;

(2)已知定点为抛物线上的一点,其横坐标为,抛物线在点处的切线交椭圆两点,求面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】方程ay=b2x2+c中的a,b,c∈{﹣3,﹣2,0,1,2,3},且a,b,c互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有( )
A.60条
B.62条
C.71条
D.80条

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的线性回归直线方程为,且之间的一组相关数据如下表所示,则下列说法错误的为

A.变量之间呈现正相关关系B.可以预测,当时,

C.D.由表格数据可知,该回归直线必过点

查看答案和解析>>

同步练习册答案