【题目】已知函数
.
(1)若
在
上的最小值为
,求
的值;
(2)若
在
上恒成立,求
的取值范围.
【答案】(1)
(2) a≥-1
【解析】试题分析:(1)求出
通过①若a≥-1,判断单调性求解最值;②若a≤-e,③若-e<a<-1,求出函数的最值,即可得到a的值;
(2)化简表达式为:a>
.令g(x)=
,求出h(x)=g′(x)=1+lnx-3x2,求出导数,判断函数的单调性,求出函数的最值,即可推出结果.
试题解析:
(1) f′(x)=
.
①若a≥-1,则x+a≥0,即f′(x)≥0在[1,e]上恒成立,
此时f(x)在[1,e]上为增函数,∴f(x)min=f(1)=-a=
,∴a=-
(舍去).
②若a≤-e,则x+a≤0,即f′(x)≤0在[1,e]上恒成立,
此时f(x)在[1,e]上为减函数,∴f(x)min=f(e)=1-
=
,∴a=-
(舍去).
③若-e<a<-1,令f′(x)=0得x=-a,
当1<x<-a时,f′(x)<0,∴f(x)在(1,-a)上为减函数;当-a<x<e时,f′(x)>0,∴f(x)在(-a,e)上为增函数,
∴f(x)min=f(-a)=ln(-a)+1=
,∴a=-
.综上所述,a=-
.
(2)∵f(x)<x2,∴ln x-
<x2.又x>0,∴a>xln x-x3.令g(x)=xln x-x3,h(x)=g′(x)=1+ln x-3x2,h′(x)=
-6x=
.∵x∈(1,+∞)时,h′(x)<0,∴h(x)在(1,+∞)上是减函数.
∴h(x)<h(1)=-2<0,即g′(x)<0,∴g(x)在(1,+∞)上也是减函数.g(x)<g(1)=-1,
∴当a≥-1时,f(x)<x2在(1,+∞)上恒成立.
科目:高中数学 来源: 题型:
【题目】【2018贵州遵义市高三上学期第二次联考】设抛物线
的准线与
轴交于
,抛物线的焦点为
,以
为焦点,离心率
的椭圆与抛物线的一个交点为
;自
引直线交抛物线于
两个不同的点,设
.
(Ⅰ)求抛物线的方程和椭圆的方程;
(Ⅱ)若
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】无穷数列
满足:
为正整数,且对任意正整数
,
为前
项
,
,
,
中等于
的项的个数.
(Ⅰ)若
,请写出数列
的前7项;
(Ⅱ)求证:对于任意正整数
,必存在
,使得
;
(Ⅲ)求证:“
”是“存在
,当
时,恒有
成立”的充要条件。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据中国日报网报道:2017年11月13日,TOP500发布的最新一期全球超级计算机500强榜单显示,中国超算在前五名中占据两席.其中超算全球第一“神威·太湖之光”完全使用了国产品牌处理器.为了了解国产品牌处理器打开文件的速度,某调查公司对两种国产品牌处理器进行了12次测试,结果如下:(数值越小,速度越快,单位是MIPS)
![]()
(Ⅰ)从品牌
的12次测试中,随机抽取一次,求测试结果小于7的概率;
(Ⅱ)从12次测试中,随机抽取三次,记
为品牌
的测试结果大于品牌
的测试结果的次数,求
的分布列和数学期望
;
(Ⅲ)经过了解,前6次测试是打开含有文字与表格的文件,后6次测试时打开含有文字与图片的文件.请你依据表中数据,运用所学的统计知识,对这两种国产品牌处理器打开文件的速度进行评价.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,已知曲线
的参数方程为
(
为参数),点
是曲线
上的一动点,以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,直线
的方程为
.
(Ⅰ)求线段
的中点
的轨迹的极坐标方程;
(Ⅱ)求曲线
上的点到直线
的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图在棱锥
中,
为矩形,
面
,
,
与面
成
角,
与面
成
角.
(1)在
上是否存在一点
,使
面
,若存在确定
点位置,若不存在,请说明理由;
(2)当
为
中点时,求二面角
的余弦值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com