【题目】无穷数列满足: 为正整数,且对任意正整数, 为前项, , , 中等于的项的个数.
(Ⅰ)若,请写出数列的前7项;
(Ⅱ)求证:对于任意正整数,必存在,使得;
(Ⅲ)求证:“”是“存在,当时,恒有 成立”的充要条件。
【答案】(Ⅰ)2,1,1,2,2,3,1;(Ⅱ)证明见解析;(Ⅲ)证明见解析.
【解析】试题分析:(Ⅰ)根据题设条件,直接写出即可;
(Ⅱ)假设存在正整数,使得对任意的, ,利用反证法证明即可;
(Ⅲ)可分充分性和必要性证明即可,当时,得数列满足, ,当为偶数,则;当为奇数,则,即可证得充分性;再作出必要性的证明即可.
试题解析:
(Ⅰ)2,1,1,2,2,3,1
(Ⅱ)假设存在正整数,使得对任意的, . 由题意,
考虑数列的前项:
, , ,…,
其中至少有项的取值相同,不妨设
此时有: ,矛盾.
故对于任意的正整数,必存在,使得.
(Ⅲ)充分性:
当时,数列为, , , , , , ,…, , , , ,…
特别地, , ,故对任意的
(1)若为偶数,则
(2)若为奇数,则
综上, 恒成立,特别地,取有当时,恒有成立
方法一:假设存在(),使得“存在,当时,恒有成立”
则数列的前项为
, , , , , , , ,…, , , ,
, , , , ,…, , , ,
, , ,…, , , ,
, , , ,
, ,
后面的项顺次为
, , , ,…, ,
, , , ,…, ,
, , , ,…, ,
……
对任意的,总存在,使得, ,这与矛盾,故若存在,当时,恒有成立,必有
方法二:若存在,当时, 恒成立,记.
由第(2)问的结论可知:存在,使得(由s的定义知)
不妨设是数列中第一个大于等于的项,即均小于等于s.
则.因为,所以,即且为正整数,所以.
记,由数列的定义可知,在中恰有t项等于1.
假设,则可设,其中,
考虑这t个1的前一项,即,
因为它们均为不超过s的正整数,且,所以中一定存在两项相等,
将其记为a,则数列中相邻两项恰好为(a,1)的情况至少出现2次,但根据数列的定义可知:第二个a的后一项应该至少为2,不能为1,所以矛盾!
故假设不成立,所以,即必要性得证!
综上,“”是“存在,当时,恒有成立”的充要条件.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,点,圆,以动点为圆心的圆经过点,且圆与圆内切.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)若直线过点,且与曲线交于两点,则在轴上是否存在一点,使得轴平分?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,平面平面,且,.四边形满足,,.为侧棱的中点,为侧棱上的任意一点.
(1)若为的中点,求证: 面平面;
(2)是否存在点,使得直线与平面垂直? 若存在,写出证明过程并求出线段的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是 (为参数).
(1)将曲线的极坐标方程化为直角坐标方程;
(2)若直线与曲线相交于两点,且,求直线的倾斜角的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn,且Sn=4an﹣p,其中p是不为零的常数.
(1)证明:数列{an}是等比数列;
(2)当p=3时,若数列{bn}满足bn+1=bn+an(n∈N*),b1=2,求数列{bn}的通项公式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com