【题目】已知曲线
的极坐标方程是
,以极点为平面直角坐标系的原点,极轴为
轴的正半轴,建立平面直角坐标系,直线
的参数方程是
(
为参数).
(1)将曲线
的极坐标方程化为直角坐标方程;
(2)若直线
与曲线
相交于
两点,且
,求直线
的倾斜角
的值.
科目:高中数学 来源: 题型:
【题目】随着共享单车的成功运营,更多的共享产品逐步走入大家的世界,共享汽车、共享篮球、共享充电宝等各种共享产品层出不穷.某公司随机抽取
人对共享产品对共享产品是否对日常生活有益进行了问卷调查,并对参与调查的
人中的性别以及意见进行了分类,得到的数据如下表所示:
![]()
(Ⅰ)根据表中的数据,能否在犯错的概率不超过
的前提下,认为对共享产品的态度与性别有关系?
(Ⅱ)为了答谢参与问卷调查的人员,该公司对参与本次问卷调查的人员随机发放
张超市的购物券,购物券金额以及发放的概率如下:
![]()
现有甲、乙两人领取了购物券,记两人领取的购物券的总金额为
,求
的分布列和数学期望.
参考公式:
.
临界值表:
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校高三年级共有1000名学生,其中男生650人,女生350人,为了调查学生周末的休闲方式,用分层抽样的方法抽查了200名学生.
(Ⅰ)完成下面的
列联表;
不喜欢运动 | 喜欢运动 | 合计 | |
女生 | 50 | ||
男生 | |||
合计 | 100 | 200 |
![]()
(Ⅱ)在抽取的样本中,调查喜欢运动女生的运动时间,发现她们的运动时间介于30分钟到90分钟之间,右图是测量结果的频率分布直方图,若从区间段
和
的所有女生中随机抽取两名女生,求她们的运动时间在同一区间段的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为坐标原点,抛物线
上在第一象限内的点
到焦点的距离为
,曲线
在点
处的切线交
轴于点
,直线
经过点
且垂直于
轴.
(Ⅰ)求
点的坐标;
(Ⅱ)设不经过点
和
的动直线
交曲线
于点
和
,交
于点
,若直线
,
,
的斜率依次成等差数列,试问:
是否过定点?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
的极坐标方程是
,以极点为平面直角坐标系的原点,极轴为
轴的正半轴,建立平面直角坐标系,直线
的参数方程是
(
为参数).
(1)将曲线
的极坐标方程化为直角坐标方程;
(2)若直线
与曲线
相交于
两点,且
,求直线
的倾斜角
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
在椭圆
上,且椭圆的离心率为
.
(1)求椭圆
的方程;
(2)若
为椭圆
的右顶点,点
是椭圆
上不同的两点(均异于
)且满足直线
与
斜率之积为
.试判断直线
是否过定点,若是,求出定点坐标,若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
为抛物线
的焦点,点
为点
关于原点的对称点,点
在抛物线
上,则下列说法错误的是( )
A. 使得
为等腰三角形的点
有且仅有4个
B. 使得
为直角三角形的点
有且仅有4个
C. 使得
的点
有且仅有4个
D. 使得
的点
有且仅有4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com