【题目】已知为坐标原点,抛物线上在第一象限内的点到焦点的距离为,曲线在点处的切线交轴于点,直线经过点且垂直于轴.
(Ⅰ)求点的坐标;
(Ⅱ)设不经过点和的动直线交曲线于点和,交于点,若直线,,的斜率依次成等差数列,试问:是否过定点?请说明理由.
【答案】(Ⅰ);(Ⅱ)恒过定点.
【解析】试题分析:(1)抛物线上在第一象限内的点到焦点的距离为,可求出n,得到抛物线方程,求导得斜率,写出切线方程;(2)设,联立抛物线方程,消元得,根据根与系数的关系,,写出,,的斜率,根据成等差数列求不,即可证明直线过定点.
试题解析:
(Ⅰ)由抛物线上的点到焦点的距离为,得,所以,则抛物线方程为,故曲线在点处的切线斜率,切线方程为,令得,所以点.
(Ⅱ)由题意知,因为与相交,所以.
设,令,得,故,
设,,
由消去得,则,,直线的斜率为,同理直线的斜率为,直线的斜率为.因为直线,,的斜率依次成等差数列,
所以,即,即整理得:,
因为不经过点,所以,所以.故,即恒过定点.
科目:高中数学 来源: 题型:
【题目】已知椭圆 ,其焦距为2,离心率为
(1)求椭圆的方程;
(2)设椭圆的右焦点为, 为轴上一点,满足,过点作斜率不为0的直线交椭圆于两点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )
A. 6 B. 8
C. 12 D. 18
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的一个焦点坐标为.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点,过点的直线(与轴不重合)与椭圆交于两点,直线与直线相交于点,试证明:直线与轴平行.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2018贵州遵义市高三上学期第二次联考】设抛物线的准线与轴交于,抛物线的焦点为,以为焦点,离心率的椭圆与抛物线的一个交点为;自引直线交抛物线于两个不同的点,设.
(Ⅰ)求抛物线的方程和椭圆的方程;
(Ⅱ)若,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是 (为参数).
(1)将曲线的极坐标方程化为直角坐标方程;
(2)若直线与曲线相交于两点,且,求直线的倾斜角的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据中国日报网报道:2017年11月13日,TOP500发布的最新一期全球超级计算机500强榜单显示,中国超算在前五名中占据两席,其中超算全球第一“神威太湖之光”完全使用了国产品牌处理器。为了了解国产品牌处理器打开文件的速度,某调查公司对两种国产品牌处理器进行了12次测试,结果如下(数值越小,速度越快,单位是MIPS)
测试1 | 测试2 | 测试3 | 测试4 | 测试5 | 测试6 | 测试7 | 测试8 | 测试9 | 测试10 | 测试11 | 测试12 | |
品牌A | 3 | 6 | 9 | 10 | 4 | 1 | 12 | 17 | 4 | 6 | 6 | 14 |
品牌B | 2 | 8 | 5 | 4 | 2 | 5 | 8 | 15 | 5 | 12 | 10 | 21 |
设分别表示第次测试中品牌A和品牌B的测试结果,记
(Ⅰ)求数据的众数;
(Ⅱ)从满足的测试中随机抽取两次,求品牌A的测试结果恰好有一次大于品牌B的测试结果的概率;
(Ⅲ)经过了解,前6次测试是打开含有文字和表格的文件,后6次测试是打开含有文字和图片的文件.请你依据表中数据,运用所学的统计知识,对这两种国产品牌处理器打开文件的速度进行评价.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列: 满足: , 或1().对任意,都存在,使得.,其中 且两两不相等.
(I)若.写出下列三个数列中所有符合题目条件的数列的序号;
①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,l,1,1,1,2,2,2,2
(Ⅱ)记.若,证明: ;
(Ⅲ)若,求的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com