【题目】数列: 满足: , 或1().对任意,都存在,使得.,其中 且两两不相等.
(I)若.写出下列三个数列中所有符合题目条件的数列的序号;
①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,l,1,1,1,2,2,2,2
(Ⅱ)记.若,证明: ;
(Ⅲ)若,求的最小值.
【答案】(Ⅰ) ②③(Ⅱ)见解析(Ⅲ)的最小值为
【解析】试题分析:(Ⅰ)依据定义检验给出的数列是否满足要求条件.(Ⅱ)当时, 都在数列中出现,可以证明至少出现4次,2至少出现2次,这样. (Ⅲ)设出现频数依次为.同(Ⅱ)的证明,可得: , , ,┄, , , ,则,我们再构造数列:
,证明该数列满足题设条件,从而的最小值为.
解析:(Ⅰ)对于①,,对于, 或,不满足要求;对于②,若,则,且彼此相异,若,则,且彼此相异,若,则,且彼此相异,故②符合题目条件;同理③也符合题目条件,故符合题目条件的数列的序号为②③.
注:只得到 ② 或只得到 ③ 给[ 1分],有错解不给分.
(Ⅱ)当时,设数列中出现频数依次为,由题意.
① 假设,则有(对任意),与已知矛盾,所以.同理可证: .
② 假设,则存在唯一的,使得.那么,对,有(两两不相等),与已知矛盾,所以.
综上: , , ,所以.
(Ⅲ)设出现频数依次为.同(Ⅱ)的证明,可得: , , ,┄, , , ,则.
取得到的数列为:
下面证明满足题目要求.对,不妨令,
① 如果或,由于,所以符合条件;
② 如果或,由于,所以也成立;
③ 如果,则可选取;同样的,如果,
则可选取,使得,且两两不相等;
④ 如果,则可选取,注意到这种情况每个数最多被选取了一次,因此也成立.综上,对任意,总存在,使得,其中且两两不相等.因此满足题目要求,所以的最小值为.
科目:高中数学 来源: 题型:
【题目】已知为坐标原点,抛物线上在第一象限内的点到焦点的距离为,曲线在点处的切线交轴于点,直线经过点且垂直于轴.
(Ⅰ)求点的坐标;
(Ⅱ)设不经过点和的动直线交曲线于点和,交于点,若直线,,的斜率依次成等差数列,试问:是否过定点?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2018届高三·湖南十校联考)已知函数f(x)=x+sin x(x∈R),且f(y2-2y+3)+f(x2-4x+1)≤0,则当y≥1时, 的取值范围是( )
A. B.
C. [1,3-3] D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线 的焦点为,过抛物线上的动点(除顶点外)作的切线交轴于点.过点作直线的垂线(垂足为)与直线交于点.
(Ⅰ)求焦点的坐标;
(Ⅱ)求证:;
(Ⅲ)求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系.曲线的极坐标方程为,曲线的参数方程为(为参数)
(1)求曲线的直角坐标方程及曲线的极坐标方程;
(2)当()时在曲线上对应的点为,若的面积为,求点的极坐标,并判断是否在曲线上(其中点为半圆的圆心)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,射线OA、OB分别与x轴正半轴成45°和30°角,过点P(1,0)作直线AB分别交OA、OB于A、B两点,当AB的中点C恰好落在直线y=x上时,求直线AB的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com