精英家教网 > 高中数学 > 题目详情
已知函数f(x)=log(a>0,a≠1)的图象关于原点对称.
(1)求m的值;
(2)判断函数f(x)在区间(1,+∞)上的单调性并加以证明;
(3)当a>1,x∈(t,a)时,f(x)的值域是(1,+∞)求a与t的值.

解:(1)因为函数f(x)=loga(a>0,a≠1)的图象关于原点对称,即f(x)为奇函数,则
f(﹣x)+f(x)=0,
loga+loga=loga=0,
=1,
解可得,m=1或m=﹣1,
当m=1时,=﹣1<0,不合题意,舍去;
当m=﹣1时,=,符合题意,
故m=﹣1;
(2)当0<a<1时,loga>0,即f(x2)﹣f(x1)>0,
此时f(x)为增函数,
当a>1时,loga<0,即f(x2)﹣f(x1)<0,
此时f(x)为减函数,证明如下
由(1)得m=﹣1,则f(x)=loga,任取1<x1<x2,则
f(x2)﹣f(x1)=loga﹣loga=loga
又由1<x1<x2,则0<<1,
当0<a<1时,loga>0,即f(x2)﹣f(x1)>0,
此时f(x)为增函数,
当a>1时,loga<0,即f(x2)﹣f(x1)<0,
此时f(x)为减函数,
(3)由(1)知,f(x)=loga>0,解可得,x>1或x<﹣1,则
f(x)的定义域为(﹣∞,﹣1)∪(1,+∞),
故(t,a)必然含于(﹣∞,﹣1)或(1,+∞),
由a>1,可知(t,a)(- ∞,﹣1)不成立,则必有(t,a)(1,+∞),
此时,f(x)的值域为(1,+∞),
又由函数f(x)为减函数,必有f(a)=1且=0;
解可得,t=﹣1,a=1+
故t=﹣1,a=1+

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案