如下图,矩形ABCD与ADQP所在平面垂直,将矩形ADQP沿PD对折,使得翻折后点Q落在BC上,设AB=1,PA=h,AD=y.
(1)试求y关于h的函数解析式;
(2)当y取最小值时,指出点Q的位置,并求出此时AD与平面PDQ所成的角;
(3)在条件(2)下,求三棱锥P—ADQ内切球的半径.
答案:解:(1)显然h>1,连接AQ, ∵平面ABCD⊥平面ADQP,PA⊥AD, ∴PA⊥平面ABCD,由已知PQ⊥DQ, ∴AQ⊥DQ,AQ=y2-h2. ∵Rt△ABQ∽Rt△QCD,, ∴,即. ∴. (2)y== =+≥2, 当且仅当,即h=时,等号成立. 此时CQ=1,即Q为BC的中点,于是由DQ⊥平面PAQ,知平面PDQ⊥平面PAQ,PQ是其交线,则过A作AE⊥平面PDQ,∴∠ADE就是AD与平面PDQ所成的角,由已知得AQ=,PQ=AD=2,∴AE=1,sinADE=,∠ADE=30°. (3)设三棱锥P-ADQ的内切球半径为r, 则(S△PAD+S△PAQ+S△PDQ+S△ADQ)·r=VP-ADQ . ∵VP-ADQ=S△ADQ·PA=,S△PAQ=1, S△PAD=,S△QAD=1,S△PDQ=, ∴r=.
|
科目:高中数学 来源:数学教研室 题型:044
(1)试求y关于h的函数解析式;
(2)当y取最小值时,指出点Q的位置,并求出此时AD与平面PDQ所成的角;
(3)在条件(2)下,求三棱锥P—ADQ内切球的半径.
查看答案和解析>>
科目:高中数学 来源:2014届云南省高二下期末考试文科数学卷(解析版) 题型:选择题
如下图,矩形ABCD中,点E为边CD上任意一点,若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率等于( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源:同步题 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:
如下图,矩形ABCD,|AB|=1,|BC|=a,PA⊥平面ABCD,|PA|=1。
(1)BC边上是否存在点Q,使得PQ⊥QD,并说明理由;
(2)若BC边上存在唯一的点Q使得PQ⊥QD,指出点Q的位置,并求出此时AD与平面
PDQ所成的角的正弦值;
(3)在(2)的条件下,求二面角Q―PD―A的正弦值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com