【题目】已知函数
(其中
为自然对数的底数).
(1)求
的单调性;
(2)若
,对于任意
,是否存在与
有关的正常数
,使得
成立?如果存在,求出一个符合条件的
;否则说明理由.
【答案】(1)当
时,
在
上的单调递增;当
时,
在
上单调递减,
在
上单调递增;(2)存在与
有关的正常数![]()
【解析】
(1)求导可得
,分别讨论
,
,
时的情况,进而判断单调性即可;
(2)存在与
有关的正常数
使得
,即
,则
,设
,满足
即可,利用导数可得
,再设
,利用导函数判断函数性质即可求解
(1)
,
①当
时,
恒成立,所以
在
上的单调递增;
②当
时,
,
,所以
在
上的单调递增;
③当
时,令
,得
,
当
时,
,
单调递减;
当
时,
,
单调递增;
综上所述:当
时,
在
上的单调递增;
当
时,
在
上单调递减,
在
上单调递增
(2)存在,
当
时,
,
设存在与
有关的正常数
使得
,即![]()
,
![]()
需求一个
,使
成立,只要求出
的最小值,满足
,
∵
,∴
在
上单调递减,在
上单调递增,
∴
,
只需证明
在
内成立即可,
令
,
,
∴
在
单调递增,
∴
,
所以
,故存在与
有关的正常数
使
成立
科目:高中数学 来源: 题型:
【题目】如图所示,已知A、B、C是长轴长为4的椭圆E上的三点,点A是长轴的一个端点,BC过椭圆中心O,且
,
.
![]()
(Ⅰ)求椭圆E的方程;
(Ⅱ)设
是以原点为圆心,短轴长为半径的圆,过椭圆E上异于其顶点的任一点P,作
的两条切线,切点分别为M,N,若直线MN在x轴、y轴上的截距分别为m,n,试计算
的值是否为定值?如果是,请给予证明;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
,
分别是椭圆![]()
的左顶点和上顶点,
为其右焦点,
,且该椭圆的离心率为
;
(1)求椭圆
的标准方程;
(2)设点
为椭圆上的一动点,且不与椭圆顶点重合,点
为直线
与
轴的交点,线段
的中垂线与
轴交于点
,若直线
斜率为
,直线
的斜率为
,且
(
为坐标原点),求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为定义在
上的奇函数,当
时,有
,且当
时,
,下列命题正确的是( )
A.
B.函数
在定义域上是周期为
的函数
C.直线
与函数
的图象有
个交点D.函数
的值域为![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】冬季历来是交通事故多发期,面临着货运高危运行、恶劣天气频发、包车客运监管漏洞和农村交通繁忙等四个方面的挑战.全国公安交管部门要认清形势、正视问题,针对近期事故暴露出来的问题,强薄羽、补短板、堵漏洞,进一步推动五大行动,巩固扩大五大行动成果,全力确保冬季交通安全形势稳定.据此,某网站推出了关于交通道路安全情况的调查,通过调查年龄在
的人群,数据表明,交通道路安全仍是百姓最为关心的热点,参与调查者中关注此类问题的约占80%,现从参与调查并关注交通道路安全的人群中随机选出100人,并将这100人按年龄分组:第1组
,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示.
![]()
(1)求这100人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);
(2)现在要从年龄较大的第4,5组中用分层抽样的方法抽取8人,再从这8人中随机抽取3人进行问卷调查,求第4组恰好抽到2人的概率;
(3)若从所有参与调查的人(人数很多)中任意选出3人,设其中关注交通道路安全的人数为随机变量X,求X的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(
,
为参数),曲线
的参数方程为
(
为参数),直线
与曲线
交于
,
两点.
(1)以坐标原点为极点,
轴正半轴为极轴建立极坐标系,求曲线
的极坐标方程;
(2)若
,点
,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com