精英家教网 > 高中数学 > 题目详情

设函数=+的所有正的极小值点从小到大排成的数列为.

(Ⅰ)求数列的通项公式;

(Ⅱ)设的前项和为,求

(I)

           

           

            得:当时,取极小值

            得:

       (II)由(I)得:

           

            当时,

            当时,

            当时,

        得: 当时,

            当时,

  当时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-ax+2a-4不等式f(x)≤0的解集有且只有一个元素,设数列{an}的前n项和Sn=f(n),n∈N*
(1)求数列{an}的通项公式;
(2)设bn=
an
2n
求{bn}的前n次和Tn
(3)在各项不为零的数列{cn}中,所有满足Cm Cm+1<0的正整数m的个数称为这个数列{Cn}的变号数,若Cn=
1
a
-
1
an
(n∈N*),求数列{Cn}的变号数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-ax+a(x∈R)同时满足:①不等式f(x)≤0的解集有且只有一个元素;②在定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立.
设数列{an}的前n项和Sn=f(n).
(1)求数列{an}的通项公式;
(2)若bn=n-k(n∈N*,k∈R)满足:对任意的正整数n都有bn<an,求k的取值范围
(3)设各项均不为零的数列{cn}中,所有满足ci•ci+1<0的正整数i的个数称为这个数列{cn}的变号数.令cn=1-
aan
(n为正整数),求数列{cn}的变号数.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,点(n,
Sn
n
)(n∈N*)
均在函数y=x+1的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
1
anan+1
,Tn是数列{bn}的前n项和,求使得Tn
m
16
对所有n∈N*都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)已知二次函数f(x)=x2-ax+a(a>0,x∈R),不等式f(x)≤0的解集有且只有一个元素,设数列{an}的前n项和Sn=f(n)(n∈N*)
(1)求数列{an}的通项公式;
(2)设bn=
an
3n
,求数列{bn}的前n项和Tn
(3)设各项均不为0的数列{cn}中,所有满足cm•cm+1<0的正整数m的个数,称为这个数列{cn}的变号数,若cn=1-
a
an
(n∈N*)
,求数列{cn}的变号数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区一模)设函数T(x)=
2x,  0≤x<
1
2
2(1-x),  
1
2
≤x≤1

(1)求函数y=T(sin(
π
2
x))和y=sin(
π
2
T(x))的解析式;
(2)是否存在非负实数a,使得aT(x)=T(ax)恒成立,若存在,求出a的值;若不存在,请说明理由;
(3)定义Tn+1(x)=Tn(T(x)),且T1(x)=T(x),(n∈N*
①当x∈[0,
1
2n
]时,求y=Tn(x)的解析式;
已知下面正确的命题:当x∈[
i-1
2n
i+1
2n
](i∈N*,1≤i≤2n-1)时,都有Tn(x)=Tn
i
2n-1
-x)恒成立.
②对于给定的正整数m,若方程Tm(x)=kx恰有2m个不同的实数根,确定k的取值范围;若将这些根从小到大排列组成数列{xn}(1≤n≤2m),求数列{xn}所有2m项的和.

查看答案和解析>>

同步练习册答案