精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=x2-ax+2a-4不等式f(x)≤0的解集有且只有一个元素,设数列{an}的前n项和Sn=f(n),n∈N*
(1)求数列{an}的通项公式;
(2)设bn=
an
2n
求{bn}的前n次和Tn
(3)在各项不为零的数列{cn}中,所有满足Cm Cm+1<0的正整数m的个数称为这个数列{Cn}的变号数,若Cn=
1
a
-
1
an
(n∈N*),求数列{Cn}的变号数.
分析:(1)先利用条件求出a,代入找到Sn的表达式,再利用Sn和an的关系来求数列{an}的通项公式;
(2)利用错位相减法对数列{bn}进行求和即可(注意分情况讨论).
(3)先利用前2问的条件求出数列{cn}的通项以及前几项,再利用函数的单调性就可求数列{Cn}的变号数.
解答:解:(1)因为f(x)≤0的解集有且只有一个元素,所以对应方程的△=0?a=4,
故f(x)=x2-4x+4,
所以Sn=f(n)=n2-4n+4?an=
s1     n=1   
sn-sn-1     n≥ 2        

?an=
1(n=1)
2n-5(n≥2)

(2)由(1)知b1=
1
2
bn=
2n-5
2n
(n≥2)
(3分)

所以当n=1时,T1=
1
2

当n≥2时,利用错位相减求和法可得Tn=1-
2n-1
2n

综合,Tn=1-
2n-1
2n
(n∈N′),(9分)
(3)Cn=
-
3
4
(n=1)
1
4
-
1
2n-5
(n≥2)

所以c1=-
3
4
,c2=
3
4
,c3=-
3
4
,c4=-
1
12
,c5=
1
20

又因为n≥5时,Cn
1
4
-
1
2×5-5
1
20
>0

故变号数为3.(4分)
点评:本题是对数列知识和函数知识的综合考查.涉及到已知前n项和为Sn求数列{an}的通项公式,根据an和Sn的关系:an=Sn-Sn-1 (n≥2)求解数列的通项公式.另外,须注意公式成立的前提是n≥2,所以要验证n=1时通项是否成立,若成立则:an=Sn-Sn-1 (n≥2);若不成立,则通项公式为分段函数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案