精英家教网 > 高中数学 > 题目详情
(2013•宁波模拟)函数y=ln|x-1|的图象与函数y=-2cosπx(-2≤x≤4)的图象所有交点的横坐标之和等于(  )
分析:由图象变化的法则和余弦函数的特点作出函数的图象,由对称性可得答案.
解答:解:由图象变化的法则可知:
y=lnx的图象作关于y轴的对称后和原来的一起构成y=ln|x|的图象,向右平移1个单位得到y=ln|x-1|的图象,再把x轴上方的图象不动,下方的图象对折上去可得g(x)=ln|x-1||的图象;
又f(x)=-2cosπx的周期为T=2,如图所示:
两图象都关于直线x=1对称,且共有6个交点,
由中点坐标公式可得:xA+xB=-2,xD+xC=2,xE+xF=6
故所有交点的横坐标之和为6
故选B
点评:本题考查函数图象的作法,熟练作出函数的图象是解决问题的关键,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•宁波模拟)如图,椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,x轴被曲线C2:y=x2-b截得的线段长等于C1的短轴长.C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A、B,直线MA,MB分别与C1相交于点D、E.
(1)求C1、C2的方程;
(2)求证:MA⊥MB.
(3)记△MAB,△MDE的面积分别为S1、S2,若
S1
S2
,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波模拟)若方程x2-5x+m=0与x2-10x+n=0的四个根适当排列后,恰好组成一个首项1的等比数列,则m:n值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波模拟)已知F1、F2是椭圆的两个焦点,满足
MF1
MF2
的点M总在椭圆内部,则椭圆离心率的取值范围是
(O,
2
2
(O,
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波模拟)已知f(x)=ax-lnx,x∈(0,e],其中e是自然常数,a∈R.
(1)当a=1时,求f(x)的单调区间和极值;
(2)若f(x)≥3恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波模拟)等差数列{an}中,2a1+3a2=11,2a3=a2+a6-4,其前n项和为sn
(Ⅰ)求数列{an}的通项公式.
(Ⅱ)若数列{bn}满足 bn=
1
sn+1-1
,其前n项和为Tn,求证Tn
3
4

查看答案和解析>>

同步练习册答案