精英家教网 > 高中数学 > 题目详情
已知函数f(x)=loga
x+b
x-b
(a>0,a≠1,b>0).
(1)求f(x)的定义域;
(2)判断f(x)的奇偶性;
(3)讨论f(x)的单调性,并证明.
(1)因为
x+b
x-b
>0
,解之得x<-b或x>b,
∴函数的定义域为(-∞,-b)∪(b,+∞).…(3分)
(2)由(1)得f(x)的定义域是关于原点对称的区间
f(-x)=loga
-x+b
-x-b
=loga
x-b
x+b

∵-f(x)=loga(
x+b
x-b
-1=loga
x-b
x+b

∴f(-x)=-f(x),可得f(x)为奇函数.…(6分)
(3)证明:设b<x1<x2,则
f(x1)-f(x2)=loga
(x1+b)(x2-b)
(x2+b)(x1-b)

(x1+b)(x2-b)
(x2+b)(x1-b)
-1=
2b(x2-x1)
(x2+b)(x1-b)
>0
∴当a>1时,f(x1)-f(x2)>0,可得f(x1)>f(x2),f(x)在(b,+∞)上为减函数;
当0<a<1时,f(x1)-f(x2)<0,可得f(x1)<f(x2),f(x)在(b,+∞)上为增函数.
同理可得:当a>1时,f(x)在(-∞,-b)上为减函数;当0<a<1时,f(x)在(-∞,-b)上为增函数.
综上所述,当a>1时,f(x)在(-∞,-b)和(b,+∞)上为减函数;当0<a<1时,f(x)在(-∞,-b)和(b,+∞)上为增函数.…(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案