精英家教网 > 高中数学 > 题目详情
设函数f(x)=ax-(a+1)ln(x+1)(a>-1)
(1)求f(x)的单调区间;
(2)当a>0时,设f(x)的最小值为g(a),若g(a)<t恒成立,求实数t的取值范围.
分析:(1)求出函数f(x)=ax-(a+1)ln(x+1)(a>-1)的导数,由于参数a的范围对导数的符号有影响,对参数分类,再研究函数的单调区间;
(2)由(Ⅰ)的结论,求出g(a)的表达式,由于g(a)<t恒成立,故求出g(a)的最大值,即得实数t的取值范围的左端点.
解答:解:(1)f′(x)=a-
a+1
x+1
=
ax-1
x+1
(x>-1),…(1分)
当a=0时,f′(x)=-
1
x+1
<0,所以函数f(x)的减区间为(-1,+∞),无增区间;
当a≠0时,f′(x)=
a(x-
1
a
)
x+1

若a>0,由f′(x)>0得x>
1
a
,由f′(x)<0得-1<x<
1
a

所以函数f(x)的减区间为(-1,
1
a
),增区间为(
1
a
,+∞),;
若-1<a<0,此时
1
a
-1,所以f′(x)=
a(x-
1
a
)
x+1
<0,
所以函数f(x)的减区间为(-1,+∞),无增区间;
综上,当-1<a≤0时,函数f(x)的减区间为(-1,+∞),无增区间,
当a>0时,函数f(x)的减区间为(-1,
1
a
),增区间为(
1
a
,+∞),.…(6分)
(2)由(Ⅰ)得,g(a)=f(
1
a
)=1-(a+1)ln(
1
a
+1),…(7分)
因为a>0,所以g(a)<t?
g(a)
a
-
t
a
<0
?
1
a
-(1+
1
a
)ln(1+
1
a
) -
t
a
<0

令h(x)=x-(1+x)ln(1+x)-tx,(x>0),则h(x)<0恒成立,
由于h′(x)=-ln(1+x)-t,
当t≥0时,h′(x)<0,故函数h(x)在(0,+∞)上是减函数,
所以h(x)<h(0)=0成立;…(10分)
当t<0时,若h′(x)>0,得0<x<e-t-1,
故函数h(x)在(0,e-t-1)上是增函数,
即对0<x<e-t-1,h(x)>h(0)=0,与题意不符;
综上,t≥0为所求.…(12分)
点评:本题考查导数在最大值与最小值问题中的应用,求解本题关键是根据导数研究出函数的单调性,由最值的定义得出函数的最值,本题中第一小题是求出函数的单调区间,第二小题是一个求函数的最值的问题,此类题运算量较大,转化灵活,解题时极易因为变形与运算出错,故做题时要认真仔细.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax+
xx-1
(x>1),若a是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数,求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+b的图象经过点(1,7),又其反函数的图象经过点(4,0),求函数的解析式,并求f(-2)、f(
12
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+bx-cx,其中a,b,c是△ABC的三条边,且c>a,c>b,则“△ABC为钝角三角形”是“?x∈(1,2),使f(x)=0”(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•杨浦区一模)(文)设函数f(x)=ax+1-2(a>1)的反函数为y=f-1(x),则f-1(-1)=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设函数f(x)=(a
x
-
1
x
)n
,其中n=3
π
sin(π+x)dx,a为如图所示的程序框图中输出的结果,则f(x)的展开式中常数项是(  )
A、-
5
2
B、-160
C、160
D、20

查看答案和解析>>

同步练习册答案