£¨¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁÐÈýÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀÔļǷ֣©
£¨A£©£¨¼¸ºÎÖ¤Ã÷Ñ¡×öÌ⣩ÒÑÖªPAÊÇÔ²DµÄÇÐÏߣ¬ÇеãΪA£¬PA=2£¬ACÊÇÔ²DµÄÖ±¾¶£¬PCÓëÔ²D½»ÓÚµãB£¬PB=1£¬ÔòÔ²OµÄ°ë¾¶r=
3
3
£®
£¨B£©£¨¼«×ø±êϵÓë²ÎÊý·½³ÌÑ¡×öÌ⣩ÔÚ¼«×ø±êϵÖУ¬ÇúÏßp=4cos£¨¦È-
¦Ð
3
£©ÉÏÈÎÒâÁ½µã¼äµÄ¾àÀëµÄ×î´óֵΪ
4
4
£®
£¨C£©£¨²»µÈʽѡ×öÌ⣩Èô²»µÈʽ|x-2|+|x+1|¡Ý¦Á¶ÔÓÚÈÎÒâx¡ÊRºã³ÉÁ¢£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§Îª
{¦Á|¦Á¡Ü3}
{¦Á|¦Á¡Ü3}
£®
·ÖÎö£º£¨A£©¸ù¾ÝÌõ¼þ£¬µÃµ½¡ÏPACÊÇÒ»¸öÖ±½Ç£¬¸ù¾Ýͬ»¡Ëù¶ÔµÄÔ²ÖܽÇÏàµÈ£¬µÃµ½Ö±½ÇÈý½ÇÐÎÖеÄÒ»¸ö½ÇºÍÒ»Ìõ±ß£¬¸ù¾ÝÁ½¸öÁ¿ÀûÓÃÈý½Çº¯Êý¶¨Ò壬µÃµ½½á¹û£®
£¨B£©ÏȽ«ÇúÏßp=4cos£¨¦È-
¦Ð
3
£©ÖеÄÈý½Çº¯ÊýÀûÓòî½Ç¹«Ê½Õ¹¿ªºó£¬Á½±ßͬ³ËÒԦѺ󻯳ÉÖ±½Ç×ø±ê·½³Ì£¬ÔÙÀûÓÃÖ±½Ç×ø±ê·½³Ì½øÐÐÇó½â£®
£¨C£©ÓÉÓÚ|x-2|+|x+1|±íʾÊýÖáÉϵĵãx¶ÔÓ¦µãµ½2ºÍ-1¶ÔÓ¦µãµÄ¾àÀëÖ®ºÍ£¬ËüµÄ×îСֵµÈÓÚ3£¬¿ÉµÃ3¡Ýa£®
½â´ð£º½â£º£º¡ßPAÊÇ¡ÑOµÄÇÐÏߣ¬ÇеãΪA£¬ACÊÇ¡ÑOµÄÖ±¾¶£¬¡à¡ÏPACÊÇÒ»¸öÖ±½Ç£¬
¡ß¡ÏPAB=30¡ã£¬¡à¡ÏPCA=30¡ã£®
¡ßPA=2£¬¡àAC=2
3
£¬
¹Ê´ð°¸Îª
3
£®
£¨B£©½«ÇúÏßp=4cos£¨¦È-
¦Ð
3
£©»¯Îª ¦Ñ=2cos¦È+2
3
sin¦È£¬¼´ ¦Ñ2=2¦Ñ•cos¦È+2
3
¦Ñ•sin¦È£¬»¨ÎªÖ±½Ç×ø±ê·½³ÌΪ x2+y2-2x-2
3
y=0£¬ÊÇÒ»¸ö°ë¾¶Îª2Ô²£®
Ô²ÉÏÁ½µã¼äµÄ¾àÀëµÄ×î´óÖµ¼´ÎªÔ²µÄÖ±¾¶£¬¹Ê´ð°¸Îª 4£®
£¨C£©ÓÉÓÚ|x-2|+|x+1|±íʾÊýÖáÉϵĵãx¶ÔÓ¦µãµ½2ºÍ-1¶ÔÓ¦µãµÄ¾àÀëÖ®ºÍ£¬ËüµÄ×îСֵµÈÓÚ3£¬¡à3¡Ý¦Á£¬
¹Ê´ð°¸Îª {¦Á|¦Á¡Ü3}£®
µãÆÀ£º±¾ÌâÖ÷ÒªÊÇ¿¼²éÓëÔ²ÓйصıÈÀýÏ߶Σ¬µãµÄ¼«×ø±êºÍÖ±½Ç×ø±êµÄ»¥»¯£¬¾ø¶ÔÖµµÄÒâÒ壬¾ø¶ÔÖµ²»µÈʽµÄ½â·¨£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍø£¨¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁÐÈýÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀ·Ö£©
A£®£¨²»µÈʽѡ×öÌ⣩²»µÈʽ|x+1|¡Ý|x+2|µÄ½â¼¯Îª
 
£®
B£®£¨¼¸ºÎÖ¤Ã÷Ñ¡×öÌ⣩ÈçͼËùʾ£¬¹ý¡ÑOÍâÒ»µãP×÷Ò»ÌõÖ±ÏßÓë¡ÑO½»ÓÚA£¬BÁ½µã£¬
ÒÑÖªPA=2£¬µãPµ½¡ÑOµÄÇÐÏß³¤PT=4£¬ÔòÏÒABµÄ³¤Îª
 
£®
C£®£¨×ø±êϵÓë²ÎÊý·½³ÌÑ¡×öÌ⣩ÈôÖ±Ïß3x+4y+m=0ÓëÔ²
x=1+cos¦È
y=-2+sin¦È
£¨¦ÈΪ²ÎÊý£©Ã»Óй«¹²µã£¬ÔòʵÊýmµÄÈ¡Öµ·¶Î§ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨ÈýÑ¡Ò»£¬¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁÐÈýÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀ·Ö£©
£¨1£©£¨×ø±êϵÓë²ÎÊý·½³ÌÑ¡×öÌ⣩ÔÚÖ±½Ç×ø±êϵÖÐÔ²CµÄ²ÎÊý·½³ÌΪ
x=1+2cos¦È
y=
3
+2sin¦È
£¨¦ÈΪ²ÎÊý£©£¬ÔòÔ²CµÄÆÕͨ·½³ÌΪ
(x-1)2+(y-
3
)2=4
(x-1)2+(y-
3
)2=4
£®
£¨2£©£¨²»µÈʽѡ½²Ñ¡×öÌ⣩É躯Êýf£¨x£©=|2x+1|-|x-4|£¬Ôò²»µÈʽf£¨x£©£¾2µÄ½â¼¯Îª
{x|x£¼-7»òx£¾
5
3
}
{x|x£¼-7»òx£¾
5
3
}
£®
£¨3£©£¨¼¸ºÎÖ¤Ã÷Ñ¡½²Ñ¡×öÌ⣩ ÈçͼËùʾ£¬µÈÑüÈý½ÇÐÎABCµÄµ×±ßAC³¤Îª6£¬ÆäÍâ½ÓÔ²µÄ°ë¾¶³¤Îª5£¬ÔòÈý½ÇÐÎABCµÄÃæ»ýÊÇ
3
3
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁÐÈýÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀÔļǷ֣©
£¨A£©£¨¼¸ºÎÖ¤Ã÷Ñ¡×öÌ⣩Èçͼ£¬CDÊÇÔ²OµÄÇÐÏߣ¬ÇеãΪC£¬µãBÔÚÔ²OÉÏ£¬BC=2£¬¡ÏBCD=30¡ã£¬ÔòÔ²OµÄÃæ»ýΪ
4¦Ð
4¦Ð
£»
£¨B£©£¨¼«×ø±êϵÓë²ÎÊý·½³ÌÑ¡×öÌ⣩¼«×ø±ê·½³Ì¦Ñ=2sin¦È+4cos¦È±íʾµÄÇúÏ߽ئÈ=
¦Ð
4
(¦Ñ¡ÊR)
ËùµÃµÄÏÒ³¤Îª
3
2
3
2
£»
£¨C£©£¨²»µÈʽѡ×öÌ⣩  ²»µÈʽ|2x-1|£¼|x|+1½â¼¯ÊÇ
£¨0£¬2£©
£¨0£¬2£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁÐÈýÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀÔļǷ֣©
A£®Èçͼ£¬¡÷ABCÊÇ¡ÑOµÄÄÚ½ÓÈý½ÇÐΣ¬PAÊÇ¡ÑOµÄÇÐÏߣ¬PB½»ACÓÚµãE£¬½»¡ÑOÓÚµãD£®ÈôPA=PE£¬¡ÏABC=60¡ã£¬PD=1£¬PB=9£¬ÔòEC=
4
4
£®
B£® PΪÇúÏßC1£º
x=1+cos¦È
y=sin¦È
£¬£¨¦ÈΪ²ÎÊý£©ÉÏÒ»µã£¬ÔòËüµ½Ö±ÏßC2£º
x=1+2t
y=2
£¨tΪ²ÎÊý£©¾àÀëµÄ×îСֵΪ
1
1
£®
C£®²»µÈʽ|x2-3x-4|£¾x+1µÄ½â¼¯Îª
{x|x£¾5»òx£¼-1»ò-1£¼x£¼3}
{x|x£¾5»òx£¼-1»ò-1£¼x£¼3}
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁжþÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀÔļǷ֣®£©
£¨A£©£¨Ñ¡ÐÞ4-4×ø±êϵÓë²ÎÊý·½³Ì£©ÇúÏß
x=cos¦Á
y=a+sin¦Á
£¨¦ÁΪ²ÎÊý£©ÓëÇúÏߦÑ2-2¦Ñcos¦È=0µÄ½»µã¸öÊýΪ
 
¸ö£®
£¨B£©£¨Ñ¡ÐÞ4-5²»µÈʽѡ½²£©Èô²»µÈʽ|x+1|+|x-3| ¡Ýa+
4
a
¶ÔÈÎÒâµÄʵÊýxºã³ÉÁ¢£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸