精英家教网 > 高中数学 > 题目详情
朝露润物新苗壮,四中学子读书忙.天蒙蒙亮,值日老师站在边长为100米的正方形运动场正中间,环顾四周.但老师视力不好,只能看清周围10米内的同学.郑鲁力同学随机站在运动场上朗读.郑鲁力同学被该老师看清的概率为
 
考点:几何概型
专题:计算题,概率与统计
分析:根据题意,所有的基本事件对应的图形是边长为100米的正方形,而事件“郑鲁力同学被该老师看清”对应的图形是正方形内部且半径等于10米的圆,由此算出相应图形的面积并利用几何概型公式,即可算出所求的概率.
解答: 解:记“郑鲁力同学被该老师看清”为事件A,
∵值日老师站在边长为100米的正方形运动场正中间,
∴所有的基本事件对应的图形是边长为100米的正方形,
其面积为S=1002=10000m2
又∵老师只能看清周围10米内的同学,当郑鲁力同学距离正方形中心的距离
不超过10米时,能够被值日老师看清,
∴事件A对应的图形是以正方形中心为圆心、半径r=10米的圆,
其面积为S'=π×102=100πm2
因此,事件A发生的概率为P(A)=
S′
S
=
100π
10000
=
π
100

即郑鲁力同学被该老师看清的概率为
π
100

故答案为:
π
100
点评:本题给出几何概率模型,求事件“郑鲁力同学被该老师看清”的概率,着重考查了平面图形面积的计算与几何概率计算公式等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a,b均为正实数,
3
是3a与3b的等比中项,则
1
a
+
2
b
的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax+b,x>1
(a+b)x,-1≤x≤1
-a-x-b,x<-1
(a>0,且a≠1,b∈R)

(1)若b=-2且f(x)为R上的增函数,求a的取值范围;
(2)若2≤a≤4且f(x)有且仅有三个零点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}的前n项和Sn=2n
(1)求{an}的通项公式;
(2)若数列{bn}满足b1=-1,bn+1=bn+(2n-1),且cn=
anbn
n
,求数列{cn}的通项公式及其前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

5张奖券中有2张是中奖的,首先由甲抽一张,然后由乙抽一张,求:
(1)甲中奖的概率P(A);
(2)甲、乙都中奖的概率P(B);
(3)只有乙中奖的概率P(C);
(4)乙中奖的概率P(D)

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意的实数t,直线ty=x-
1
2
与圆x2+y2=1的位置关系一定是(  )
A、相切
B、相交且直线不过圆心
C、相交且直线不一定过圆心
D、相离

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P1(a1,b1),P2(a2,b2),…,Pn(an,bn),…,(n∈N*),都在函数y=log
1
2
x的图象上.
(1)若数列{bn}是等差数列,求证:数列{an}是等比数列;
(2)若数列{an}的前n项和是Sn=1-(
1
2
)n
,设过点Pn、Pn+1的直线与坐标轴所围成的三角形面积为cn,求cn的最大值;
(3)若存在一个常数q,使得对任意的正整数n都有dn<q,且
lim
n→∞
dn
=q,则称{dn}为“左逼近”数列,q为该数列的“左逼近”值.若数列{an}的前n项和是Sn=1-(
1
2
)n
,设数列{bn}的前n项和是Bn,且Tn=
Bn+1
Bn
+
Bn
Bn+1
,An=T1+T2+…+Tn-2n,试判断数列{An}是否为“左逼近”数列,如果是,求出“左逼近”值;如果不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若动点M到定点F1(0,-1)、F2(0,1)的距离之和为2,则点M的轨迹为(  )
A、椭圆
B、直线F1F2
C、线段F1F2
D、直线F1F2的垂直平分线

查看答案和解析>>

科目:高中数学 来源: 题型:

从学校参加数学竞赛的学生的试卷中抽取一个样本,考察竞赛的成绩分布,将样本分成5组,绘制频率分布直方图如图,从左至右各小组的小长方形的高之比为1:3:6:4:2,最右边一组的频数是6,请结合直方图提供的信息,解答下列问题:
(1)样本的容量是多少?
(2)列出频率分布表;
(3)成绩落在哪个范围的人数最多?并求出该小组的频数、频率.

查看答案和解析>>

同步练习册答案