精英家教网 > 高中数学 > 题目详情
精英家教网已知圆O:x2+y2=1,圆C:(x-2)2+(y-4)2=1.在两圆外一点P(a,b)引两圆切线PA、PB,切点分别为A、B,满足|PA|=|PB|.
(1)求实数a,b间的关系式.
(2)求切线长|PA|的最小值.
(3)是否存在以P为圆心的圆,使它与圆O相内切并且与圆C相外切,若存在求出圆P的方程,若不存在,请说明理由.
分析:(1)连接PO,PC,利用|PA|=|PB|.结合半径,推出实数a,b间的关系式.
(2)利用(1)的结论,通过勾股定理求出切线长|PA|的表达式,利用配方法求出最小值.
(3)设存在以P为圆心的圆,设出半径,利用|PC|=|PO|+2,结合勾股定理推出
a2+b2
=4-(a+2b)=-1<0
,说明故满足条件的圆不存在.
解答:解:(1)连接PO,PC,∵|PA|=|PB|,|0A|=|CB|=1,
∴|PO|2=|PC|2从而a2+b2=(a-2)2+(b-4)2,a+2b-5=0.
(2)由(1)得a=-2b+5
∴|PA|=
|PO|2-|OA|2
=
a2+b2-1
=
5b2-20b+24
=
5(b-2)2+4

当b=2时,|PA|min=2.
(3)若存在,设半径为R,则有|PO|=R-1,|PC|=R+1,于是|PC|=|PO|+2,
(a-2)2+(b-4)2 
=
a2+b2
+2

整理得
a2+b2
=4-(a+2b)=-1<0

故满足条件的圆不存在.
点评:本题是中档题,考查直线与圆的位置关系,勾股定理的应用,存在性问题的解法,考查计算能力,推理能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知圆O:x2+y2=2交x轴于A,B两点,曲线C是以AB为长轴,离心率为
2
2
的椭圆,其左焦点为F.若P是圆O上一点,连接PF,过原点O作直线PF的垂线交椭圆C的左准线于点Q.
(1)求椭圆C的标准方程;
(2)若点P的坐标为(1,1),求证:直线PQ与圆O相切;
(3)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知圆o:x2+y2=b2与椭圆
x2
a2
+
y2
b2
=1(a>b>0)
有一个公共点A(0,1),F为椭圆的左焦点,直线AF被圆所截得的弦长为1.
(1)求椭圆方程.
(2)圆o与x轴的两个交点为C、D,B( x0,y0)是椭圆上异于点A的一个动点,在线段CD上是否存在点T(t,0),使|BT|=|AT|,若存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:x2+y2=9,定点 A(6,0),直线l:3x-4y-25=0
(1)若P为圆O上动点,求线段PA的中点M的轨迹方程
(2)设E、F分别是圆O和直线l上任意一点,求线段EF的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州一模)已知圆O:x2+y2=r2,点P(a,b)(ab≠0)是圆O内一点,过点P的圆O的最短弦所在的直线为l1,直线l2的方程为ax+by+r2=0,那么(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:x2+y2=1,点P在直线x=
3
上,O为坐标原点,若圆O上存在点Q,使∠OPQ=30°,则点P的纵坐标y0的取值范围是(  )

查看答案和解析>>

同步练习册答案