精英家教网 > 高中数学 > 题目详情
已知圆O:x2+y2=9,过圆外一点P作圆的切线PA(A为切点),当点P在直线2x-y+10=0上运动时,则线段PA的最小值为(  )
分析:设直线2x-y+10=0为直线MQ,过圆心O作OP垂直于直线MQ,过P作圆的切线,此时PA最短,先由圆心O及直线MQ的方程,利用点到直线的距离公式求出|OP|的长,再由圆的半径,利用勾股定理求出|PA|的长,即为所求的最小值.
解答:解:设直线2x-y+10=0为直线MQ,过圆心O作OP⊥直线MQ,
连接OA,如图所示:

由PA为圆O的切线,得到OA⊥PA,即∠OAP=90°,
∵x2+y2=9,∴圆心O坐标为(0,0),半径|OA|=3,
∴圆心O到直线2x-y+10=0的距离|OP|=
10
5
=2
5

在Rt△OAP中,根据勾股定理得:|AP|=
|OP|2-|OA|2
=
11

故选D
点评:此题考查了直线与圆的位置关系,涉及的知识有:圆的切线性质,勾股定理,点到直线的距离公式,解题的关键是过圆心作已知直线的垂线,过垂足作圆的切线,得到此时的切线长最短.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知圆O:x2+y2=2交x轴于A,B两点,曲线C是以AB为长轴,离心率为
2
2
的椭圆,其左焦点为F.若P是圆O上一点,连接PF,过原点O作直线PF的垂线交椭圆C的左准线于点Q.
(1)求椭圆C的标准方程;
(2)若点P的坐标为(1,1),求证:直线PQ与圆O相切;
(3)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知圆o:x2+y2=b2与椭圆
x2
a2
+
y2
b2
=1(a>b>0)
有一个公共点A(0,1),F为椭圆的左焦点,直线AF被圆所截得的弦长为1.
(1)求椭圆方程.
(2)圆o与x轴的两个交点为C、D,B( x0,y0)是椭圆上异于点A的一个动点,在线段CD上是否存在点T(t,0),使|BT|=|AT|,若存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:x2+y2=9,定点 A(6,0),直线l:3x-4y-25=0
(1)若P为圆O上动点,求线段PA的中点M的轨迹方程
(2)设E、F分别是圆O和直线l上任意一点,求线段EF的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州一模)已知圆O:x2+y2=r2,点P(a,b)(ab≠0)是圆O内一点,过点P的圆O的最短弦所在的直线为l1,直线l2的方程为ax+by+r2=0,那么(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:x2+y2=1,点P在直线x=
3
上,O为坐标原点,若圆O上存在点Q,使∠OPQ=30°,则点P的纵坐标y0的取值范围是(  )

查看答案和解析>>

同步练习册答案