¶¨Ò壺Á½¸öÁ¬Ðøº¯Êý£¨Í¼Ïó²»¼ä¶Ï£©f£¨x£©¡¢g£¨x£©ÔÚÇø¼ä[a£¬b]É϶¼ÓÐÒâÒ壬Ôò³Æº¯Êý|f£¨x£©+g£¨x£©|ÔÚ[a£¬b]ÉϵÄ×î´óÖµ½Ð×öº¯Êýf£¨x£©Óëg£¨x£©ÔÚÇø¼ä[a£¬b]Éϵġ°¾ø¶ÔºÍ¡±£®ÒÑÖªº¯Êýf£¨x£©=x3£¬g£¨x£©=x3-3ax2+2£®
£¨¢ñ£©Èôº¯Êýy=g£¨x£©ÔÚµãP£¨1£¬g£¨1£©£©´¦µÄÇÐÏßÓëÖ±Ïßy=x+2ƽÐУ¬ÇóaµÄÖµ£»
£¨¢ò£©ÔÚ£¨¢ñ£©µÄÌõ¼þÏÂÇóººË³f£¨x£©Óëg£¨x£©ÔÚÇø¼ä[0£¬2]Éϵġ°¾ø¶ÔÖµ¡±
£¨¢ó£©¼Çf£¨x£©Óëg£¨x£©ÔÚÇø¼ä[0£¬2]Éϵġ°¾ø¶ÔºÍ¡±Îªh(a)£¬a£¾
32
£¬ÇÒh£¨a£©=2£¬ÊÔÇóaµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨¢ñ£©Óõ¼ÊýµÄ¼¸ºÎÒâÒåÇó½â£®
£¨¢ò£©ÏȽ¨Á¢m£¨x£©=f£¨x£©+g£¨x£©£¬ÔÙÇóµ¼Ñо¿µ¥µ÷ÐÔ£¬È·¶¨¼«Öµ£¬ÔÙ¼ÓÉ϶˵ãÇóµÃ×î´óÖµ£®
£¨¢ó£©°´ÕÕ£¨II£©µÄ˼·ÇóµÃ¡°¾ø¶ÔºÍ¡±£¬ÔÙÓÉa£¾
3
2
ºÍ[0£¬2]·ÖÀàÌÖÂÛ£®
½â´ð£º½â£º£¨¢ñ£©¡ßg¡ä£¨x£©=3x2-6ax£¬g£¨x£©µØµã£¨1£¬g£¨1£©£©´¦µÄÇÐÏßÓëÖ±Ïßy=x+2ƽÐУ¬
¡àg¡ä£¨1£©=3-6a=1£¬a=
1
3

£¨¢ò£©m£¨x£©=2x3-x2+2£¬m¡ä£¨x£©=6x2-2x=6x£¨x-
1
3
£©ÓÉm¡ä£¨x£©=6x2-2x=6x£¨x-
1
3
£©£¾0£¬µÃx£¼0»òx£¾
1
3

ÓÉm¡ä£¨x£©=6x2-2x=6x£¨x-
1
3
£©£¼0£¬µÃ0£¼x£¼
1
3

ÓÖ¡ßx¡Ê[0£¬2]
|m£¨2£©|£¾|m£¨0£©|£¾|m£¨
1
3
£©|
¡àf£¨x£©Óëg£¨x£©ÔÚÇø¼ä[0£¬2]Éϵġ°¾ø¶ÔºÍ¡±Îª12
£¨¢ó£©¼Çm£¨x£©=f£¨x£©+g£¨x£©£¬Ôòm£¨x£©=2x3-3ax2+2
m¡ä£¨x£©=6x£¨x-a£©
¡ßa£¾
3
2
£¾0
¡àÓÉm£¨x£©=6x£¨x-a£©£¾0µÃx£¾a»òx£¼0
ÓÉm£¨x£©=6x£¨x-a£©£¼0µÃ0£¼x£¼a
ÓÖ¡ßx¡Ê[0£¬2]£¬ÇÒa£¾
3
2

£¨1£©µ±
3
2
£¼a£¼2ʱ£¬m£¨x£©ÔÚ[0£¬a]Éϵ¥µ÷µÝ¼õ£¬ÔÚ[a£¬2]Éϵ¥µ÷µÝÔö£®
ÓÖ¡ßm£¨0£©=2£¬m£¨a£©=2-a2£¼0£¬Ôò|m£¨2£©|£¼|m£¨a£©|
´ËʱÓÐ|m£¨0£©|-|m£¨a£©|=4-a2¡Ý0£¬½âµÃa¡Ü
34

¡à£¨i£©µ±
3
2
£¼a£¼
34
£¬|m£¨0£©|£¾|m£¨a£©|
¹Ê¡°¾ø¶ÔºÍ¡±Îªh£¨a£©=m£¨0£©=2
£¨ii£©µ±
34
£¼a£¼2
£¬|m£¨0£©|£¼|m£¨a£©|
¹Ê¡°¾ø¶ÔÖµºÍ¡±Îªh£¨a£©=m£¨a£©=a2-2
£¨2£©a¡Ý2£¬m£¨x£©ÔÚx¡Ê[0£¬2]Éϵ¥µ÷µÝ¼õ£¬
|m£¨2£©|£¾|m£¨0£©|£¬
¹Ê¡°¾ø¶ÔºÍ¡±Îªh£¨a£©=m£¨2£©=12a-18¡Ý6£¾2
ÓÉ£¨1£©£¨2£©µÃaµÄÈ¡Öµ·¶Î§ÊÇ
3
2
£¼a£¼
34
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éµ¼ÊýµÄ¼¸ºÎÒâÒ壬Óõ¼Êý·¨Çóº¯ÊýµÄ×î´óÖµÒÔ¼°ÓÃж¨ÒåÀ´Ñо¿×î´óÖµµÄÓ¦Óã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶¨Ò壺Á½¸öÁ¬Ðøº¯Êý£¨Í¼Ïó²»¼ä¶Ï£©f£¨x£©£¬g£¨x£©ÔÚÇø¼ä[a£¬b]É϶¼ÓÐÒâÒ壬ÎÒÃdzƺ¯Êý|f£¨x£©+g£¨x£©|ÔÚ[a£¬b]ÉϵÄ×î´óÖµ½Ð×öº¯Êýf£¨x£©Óëg£¨x£©ÔÚÇø¼ä[a£¬b]Éϵġ°¾ø¶ÔºÍ¡±£®
£¨1£©ÊÔÇóº¯Êýf£¨x£©=x2Óëg£¨x£©=x£¨x+2£©£¨x-4£©ÔÚ±ÕÇø¼ä[-2£¬2]Éϵġ°¾ø¶ÔºÍ¡±£®
£¨2£©Éèhm£¨x£©=-4x+m¼°f£¨x£©=x2¶¼ÊǶ¨ÒåÔÚ±ÕÇø¼ä[1£¬3]ÉÏ£¬¼Çhm£¨x£©Óëf£¨x£©µÄ¡°¾ø¶ÔºÍ¡±ÎªDm£¬Èç¹ûD£¨m£©µÄ×îСֵÊÇD£¨m0£©£¬Ôò³Æf£¨x£©¿ÉÓÃhm0(x)¡°Ìæ´ú¡±£¬ÊÔÇóm0µÄÖµ£¬Ê¹f£¨x£©¿ÉÓÃhm0(x)¡°Ìæ´ú¡±£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶¨Ò壺Á½¸öÁ¬Ðøº¯Êýf£¨x£©£¬g£¨x£©ÔÚ±ÕÇø¼ä[a£¬b]É϶¼ÓÐÒâÒ壬ÎÒÃdzƺ¯Êý|f£¨x£©-g£¨x£©|ÔÚ[a£¬b]ÉϵÄ×î´óÖµ½Ð×öº¯Êýf£¨x£©Óëg£¨x£©ÔÚ[a£¬b]Éϵľø¶ÔÖµ²î£®
£¨1£©ÇóÁ½Á¬Ðøº¯Êýf£¨x£©=2x3+x-5Óëg£¨x£©=x3-2x2+5x-10ÔÚ±ÕÇø¼ä[-3£¬2]Éϵľø¶Ô²î£»
£¨2£©ÈôÁ½Á¬Ðøº¯Êýf£¨x£©=ln£¨x2+1£©+2kÓëg£¨x£©=x+kÔÚ±ÕÇø¼ä[-1£¬1]ÉϾø¶Ô²îΪ2£¬ÇókµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

¶¨Ò壺Á½¸öÁ¬Ðøº¯Êýf£¨x£©£¬g£¨x£©ÔÚ±ÕÇø¼ä[a£¬b]É϶¼ÓÐÒâÒ壬ÎÒÃdzƺ¯Êý|f£¨x£©-g£¨x£©|ÔÚ[a£¬b]ÉϵÄ×î´óÖµ½Ð×öº¯Êýf£¨x£©Óëg£¨x£©ÔÚ[a£¬b]Éϵľø¶ÔÖµ²î£®
£¨1£©ÇóÁ½Á¬Ðøº¯Êýf£¨x£©=2x3+x-5Óëg£¨x£©=x3-2x2+5x-10ÔÚ±ÕÇø¼ä[-3£¬2]Éϵľø¶Ô²î£»
£¨2£©ÈôÁ½Á¬Ðøº¯Êýf£¨x£©=ln£¨x2+1£©+2kÓëg£¨x£©=x+kÔÚ±ÕÇø¼ä[-1£¬1]ÉϾø¶Ô²îΪ2£¬ÇókµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

¶¨Ò壺Á½¸öÁ¬Ðøº¯Êý£¨Í¼Ïó²»¼ä¶Ï£©f£¨x£©¡¢g£¨x£©ÔÚÇø¼ä[a£¬b]É϶¼ÓÐÒâÒ壬Ôò³Æº¯Êý|f£¨x£©+g£¨x£©|ÔÚ[a£¬b]ÉϵÄ×î´óÖµ½Ð×öº¯Êýf£¨x£©Óëg£¨x£©ÔÚÇø¼ä[a£¬b]Éϵġ°¾ø¶ÔºÍ¡±£®ÒÑÖªº¯Êýf£¨x£©=x3£¬g£¨x£©=x3-3ax2+2£®
£¨I£©Èôº¯Êýy=g£¨x£©ÔÚµãP£¨1£¬g£¨1£©£©´¦µÄÇÐÏßÓëÖ±Ïßy=x+2ƽÐУ¬ÇóaµÄÖµ£»
£¨II£©ÔÚ£¨I£©µÄÌõ¼þÏÂÇóººË³f£¨x£©Óëg£¨x£©ÔÚÇø¼ä[0£¬2]Éϵġ°¾ø¶ÔÖµ¡±
£¨¢ó£©¼Çf£¨x£©Óëg£¨x£©ÔÚÇø¼ä[0£¬2]Éϵġ°¾ø¶ÔºÍ¡±ÎªÊýѧ¹«Ê½£¬ÇÒh£¨a£©=2£¬ÊÔÇóaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸