精英家教网 > 高中数学 > 题目详情
定义在上的函数满足以下条件:
(1)对任意(2)对任意.
以下不等式:①;②;③;④.其中一定成立的是           (请写出所有正确的序号)
①②③

试题分析:条件(1)说明是奇函数;条件(2)说明函数在是增函数且函数值为正数。由(1)可知在[-a,-1]函数也为增函数,函数值为负,且有a>1>0.
因为奇函数在x=0有意义,则f(0)=0,所以结合(2)知①对;
因为所以,②对;
因为a>1>0,,且a越大,越接近-3,能保证自变量的值在函数的增区间内,所以正确,③对;
对于④,特取a=2时。 , f(-a)=f(2)>0,所以 <f(2)矛盾,④不成立。
综上所述①②③一定成立。
点评:中档题,对于奇函数,其图象关于原点成中心对称。在关于原点对称的区间,奇函数单调性相同,偶函数单调性相反。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)已知函数是定义在上的偶函数,已知当时,.
(1)求函数的解析式;
(2)求函数的单调递增区间;
(3)求在区间上的值域。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数
(I)求x为何值时,上取得最大值;
(II)设是单调递增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数的定义域为R,当时,,且对任意的实数R,等式成立.若数列满足,且
(N*),则的值为(     )
A.4024B.4023C.4022D.4021

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知函数
(1)求函数的单调区间和值域。
(2)设,求函数,若对于任意,总存在,使得成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)设计一副宣传画,要求画面积为4840,画面的宽与高的比为,画面的上,下各留8空白,左右各留5空白,怎样确定画面的高于宽尺寸,能使宣传画所用纸张面积最小?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
我们把定义在上,且满足(其中常数满足)的函数叫做似周期函数.
(1)若某个似周期函数满足且图像关于直线对称.求证:函数是偶函数;
(2)当时,某个似周期函数在时的解析式为,求函数的解析式;
(3)对于确定的时,,试研究似周期函数函数在区间上是否可能是单调函数?若可能,求出的取值范围;若不可能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共8分)
提高二环路的车辆通行能力可有效改善整个城区的交通状况,在一般情况下,二环路上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数。当二环路上的车流密度达到600辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过60辆/千米时,车流速度为80千米/小时,研究表明:当60≤x≤600时,车流速度v是车流密度x的一次函数。
(Ⅰ)当0≤x≤600时,求函数f(x)的表达式;
(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过二环路上某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出最大值。(精确到1辆/小时)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数其中
(1)、若的单调增区间是(0.1),求m的值
(2)、当时,函数的图像上任意一点的切线斜率恒大于3m,求m的取值范围.

查看答案和解析>>

同步练习册答案