精英家教网 > 高中数学 > 题目详情
(本小题共8分)
提高二环路的车辆通行能力可有效改善整个城区的交通状况,在一般情况下,二环路上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数。当二环路上的车流密度达到600辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过60辆/千米时,车流速度为80千米/小时,研究表明:当60≤x≤600时,车流速度v是车流密度x的一次函数。
(Ⅰ)当0≤x≤600时,求函数f(x)的表达式;
(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过二环路上某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出最大值。(精确到1辆/小时)
(1) f(x)=
(2) 当车流密度为300辆/千米时,车流量达到最大值,约为13333辆/小时.

试题分析:解:(Ⅰ)由题意:当0≤x≤60时,v(x)=80;
当60≤x≤600时,设v(x)=ax+b,显然v(x)=ax+b在[60,600]是减函数,
由已知得,解得
故函数v(x)的表达式为v(x)=            4分
(Ⅱ)依题意并由(Ⅰ)可得f(x)=
当0≤x≤60时,f(x)为增函数,故当x=60时,其最大值为60×80=4800;
当60≤x≤600时,f(x)= ≤
当且仅当x=300时,等号成立.
所以,当x=300时,f(x)在区间[60,600]上取得最大值.
综上,当x=300时,f(x)在区间[0,600]上取得最大值≈13333,
即当车流密度为300辆/千米时,车流量达到最大值,约为13333辆/小时.    8分
点评:解决该试题的关键是对于实际问题能翻译为代数式,同时能结合函数的性质得到最值。属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

直线与函数的图象的交点个数是 (     )
A.0B.1C.0或1D.以上均不对

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

定义在上的函数满足以下条件:
(1)对任意(2)对任意.
以下不等式:①;②;③;④.其中一定成立的是           (请写出所有正确的序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,对使
,则的取值范围是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义域为的偶函数上是减函数,且,则不等式 (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,且函数恰有3个不同的零点,则实数的取值范围是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数处有极值10,则m,n的值是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数是函数的反函数,且,则=      

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数的定义域用D表示,则使D均成立的实数的范围是___    

查看答案和解析>>

同步练习册答案