精英家教网 > 高中数学 > 题目详情
若函数的定义域用D表示,则使D均成立的实数的范围是___    

试题分析:因为函数的定义域用D表示,即可知为使D均成立,则满足>0,那么可知为分子和分母同号,根据二次函数的性质可知,只有判别式都小于零时满足题意,可知参数的范围是,解得为

点评:函数与不等式的求解,主要是结合函数的性质来分析得到,有创新性。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

定义区间的长度为.若是函数的一个长度最大的单调递减区间,则
A.,B.,
C.,D.,

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共8分)
提高二环路的车辆通行能力可有效改善整个城区的交通状况,在一般情况下,二环路上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数。当二环路上的车流密度达到600辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过60辆/千米时,车流速度为80千米/小时,研究表明:当60≤x≤600时,车流速度v是车流密度x的一次函数。
(Ⅰ)当0≤x≤600时,求函数f(x)的表达式;
(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过二环路上某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出最大值。(精确到1辆/小时)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数其中
(1)、若的单调增区间是(0.1),求m的值
(2)、当时,函数的图像上任意一点的切线斜率恒大于3m,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)设,其中为正实数。
(1)当时,求的极值点;
(2)若为R上的单调函数,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义域为R的函数满足,当时,,若时,恒成立,则实数的取值范围是     .
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分) 某工厂每天生产某种产品最多不超过40件,并且在生产过程中产品的正品率P与每日生产产品件数x(x∈N*)间的关系为P,每生产一件正品盈利4000元,每出现一件次品亏损2000元.(注:正品率=产品的正品件数÷产品总件数×100%).
(Ⅰ)将日利润y(元)表示成日产量x(件)的函数;
(Ⅱ)求该厂的日产量为多少件时,日利润最大?并求出日利润的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
(1)已知函数
(2)已知函数分别由下表给出:

1
2
 
3
6

1
2

2
1
  
用分段函数表示,并画出函数的图象。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

是定义在上的单调增函数,满足
(1)求
(2)若,求的取值范围。

查看答案和解析>>

同步练习册答案