| A. | $\sqrt{3}$-1 | B. | 2-$\sqrt{3}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
分析 由题意可知:△OMF2为等边三角形,∠OF2M=60°,|MF2|=c,丨MF1丨=$\sqrt{3}$c,丨MF1丨+|MF2|=2a=$\sqrt{3}$c+c=($\sqrt{3}$+1)c,a=$\frac{(\sqrt{3}+1)}{2}$,由椭圆的离心率公式即可求得椭圆的离心率.
解答
解:由题意可知:MF1⊥MF2,则△F1MF2为直角三角形,
由|MF2|=|MO|,
O为F1F2中点,则丨OM丨=丨OF2丨,
∴△OMF2为等边三角形,∠OF2M=60°
∴|MF2|=c,
∴丨MF1丨=$\sqrt{3}$c,
由椭圆的定义可知:
丨MF1丨+|MF2|=2a=$\sqrt{3}$c+c=($\sqrt{3}$+1)c,a=$\frac{(\sqrt{3}+1)}{2}$,
则该椭圆的离心率e=$\frac{c}{a}$=$\frac{c}{\frac{\sqrt{3}+1}{2}c}$=$\sqrt{3}$-1,
该椭圆的离心率为$\sqrt{3}$-1,
故选:A.
点评 本题考查椭圆的简单几何性质,考查直角三角形的性质,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 大前提错误导致结论错误 | B. | 小前提错误导致结论错误 | ||
| C. | 推理形式错误导致结论错误 | D. | 推理没有问题,结论正确 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 22016-2 | B. | 22017-1 | C. | 22016-1 | D. | 22017-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,1] | B. | [1,2] | C. | [-1,2) | D. | (-1,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A,B,C三点共线 | B. | A,B,D三点共线 | C. | A,C,D三点共线 | D. | B,C,D三点共线 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com