精英家教网 > 高中数学 > 题目详情
函数f(x)=x2+mx+9在区间(-3,+∞)单调递增,则实数m的取值范围为(  )
分析:利用导数法或二次函数的对称轴之间的关系进行求值.导数法主要转化为f'(x)≥0在[-3,+∞)上恒成立.二次函数法主要判断二次函数的单调增区间与区间(-3,+∞)的关系.
解答:解:方法1:导数法
函数的导数为f'(x)=2x+m,要使函数在区间(-3,+∞)单调递增,
即f'(x)=2x+m≥0在[-3,+∞)上恒成立,
所以m≥-2x在[-3,+∞)上恒成立,
所以m≥6.
方法2:函数性质法
二次函数的对称轴为-
m
2
,且函数在[-
m
2
,+∞)上单调递增,
所以要使数在区间(-3,+∞)单调递增,则-
m
2
≤-3.
解得m≥6.
故选B.
点评:本题主要考查函数单调性的逆用,通常是利用导数法或者单调性的定义法去判断.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-ax+4+2lnx
(I)当a=5时,求f(x)的单调递减函数;
(Ⅱ)设直线l是曲线y=f(x)的切线,若l的斜率存在最小值-2,求a的值,并求取得最小斜率时切线l的方程;
(Ⅲ)若f(x)分别在x1、x2(x1≠x2)处取得极值,求证:f(x1)+f(x2)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2+2x在[m,n]上的值域是[-1,3],则m+n所成的集合是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-2x-3的图象为曲线C,点P(0,-3).
(1)求过点P且与曲线C相切的直线的斜率;
(2)求函数g(x)=f(x2)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=-x2+2x,x∈(0,3]的值域为
[-3,1]
[-3,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+
12
x
+lnx的导函数为f′(x),则f′(2)=
5
5

查看答案和解析>>

同步练习册答案