精英家教网 > 高中数学 > 题目详情
幂函数f(x)=xα经过点P(2,4),则f(
2
)=
 
考点:幂函数的概念、解析式、定义域、值域
专题:函数的性质及应用
分析:利用幂函数的性质求解.
解答: 解:∵幂函数f(x)=xα经过点P(2,4),
∴2a=4,解得a=2,
∴f(x)=x2
∴f(
2
)=(
2
2=2.
故答案为:2.
点评:本题考查函数值的求法,解题时要认真审题,注意幂函数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查得到了如下的列联表:
患心肺疾病不患心肺疾病合计
5
10
合计50
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为
3
5

(Ⅰ)请将上面的列联表补充完整;
(Ⅱ)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;
(Ⅲ)已知在患心肺疾病的10位女性中,有3位又患胃病.现在从患心肺疾病的10位女性中,选出3名进行其他方面的排查,记选出患胃病的女性人数为ξ,求ξ的分布列,数学期望以及方差;大气污染会引起各种疾病,试浅谈日常生活中如何减少大气污染.
下面的临界值表供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1的离心率为2,一个焦点坐标为F2
2
3
3
,0),直线l:y=ax+1与双曲线交于A、B两点.
(1)求双曲线的标准方程;
(2)若以AB为直径的圆过坐标原点,求实数a的值;
(3)是否存在这样的实数a,使A、B两点关于直线y=
1
2
x对称?若存在,请求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

对非负实数m“四舍五入”到个位的值记为<m>.如<0.48>=0,<0.64>=1,<1.495>=1,…,若2.5<x2-x+
3
2
>=3.5,则<|x|>=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,如图是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图.将日均收看该体育节目时间不低于40分钟的观众称为“体育”.
根据已知条件完成下面的2×2列联表:
是否体育迷
性别
非体育迷体育迷总计
 
 
45
 
1055
总计
 
 
100

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(
1
9
x+(
1
3
x-1+a=0有正解,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x3+ax在(-∞,-1]上递减,且g(x)=2x+
a
x
在(1,2]上既有最大值,又有最小值,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
2x-1
x+1
(-2≤x≤0且x≠-1),则y的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在△ABC中,G为△ABC的重心,D在边AC上,且
CD
=3
DA
,则(  )
A、
GD
=
1
3
AB
+
7
12
AC
B、
GD
=-
1
3
AB
-
1
12
AC
C、
GD
=-
1
3
AB
+
7
12
AC
D、
GD
=-
1
3
AB
+
1
12
AC

查看答案和解析>>

同步练习册答案