½üÄê¿ÕÆøÖÊÁ¿Öð²½¶ñ»¯£¬Îíö²ÌìÆøÏÖÏó³öÏÖÔö¶à£¬´óÆøÎÛȾΣº¦¼ÓÖØ£®´óÆøÎÛȾ¿ÉÒýÆðÐļ¡¢ºôÎüÀ§ÄѵÈÐķμ²²¡£®ÎªÁ˽âijÊÐÐķμ²²¡ÊÇ·ñÓëÐÔ±ðÓйأ¬ÔÚÄ³Ò½ÔºËæ»úµÄ¶ÔÈëÔº50È˽øÐÐÁËÎʾíµ÷²éµÃµ½ÁËÈçϵÄÁÐÁª±í£º
»¼Ðķμ²²¡²»»¼Ðķμ²²¡ºÏ¼Æ
ÄÐ5
Ů10
ºÏ¼Æ50
ÒÑÖªÔÚÈ«²¿50ÈËÖÐËæ»ú³éÈ¡1ÈË£¬³éµ½»¼Ðķμ²²¡µÄÈ˵ĸÅÂÊΪ
3
5
£®
£¨¢ñ£©Ç뽫ÉÏÃæµÄÁÐÁª±í²¹³äÍêÕû£»
£¨¢ò£©ÊÇ·ñÓÐ99.5%µÄ°ÑÎÕÈÏΪ»¼Ðķμ²²¡ÓëÐÔ±ðÓйأ¿ËµÃ÷ÄãµÄÀíÓÉ£»
£¨¢ó£©ÒÑÖªÔÚ»¼Ðķμ²²¡µÄ10λŮÐÔÖУ¬ÓÐ3λÓÖ»¼Î¸²¡£®ÏÖÔÚ´Ó»¼Ðķμ²²¡µÄ10λŮÐÔÖУ¬Ñ¡³ö3Ãû½øÐÐÆäËû·½ÃæµÄÅŲ飬¼ÇÑ¡³ö»¼Î¸²¡µÄÅ®ÐÔÈËÊýΪ¦Î£¬Çó¦ÎµÄ·Ö²¼ÁУ¬ÊýѧÆÚÍûÒÔ¼°·½²î£»´óÆøÎÛȾ»áÒýÆð¸÷ÖÖ¼²²¡£¬ÊÔdz̸ÈÕ³£Éú»îÖÐÈçºÎ¼õÉÙ´óÆøÎÛȾ£®
ÏÂÃæµÄÁÙ½çÖµ±í¹©²Î¿¼£º
P£¨K2¡Ýk£©0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
£¨²Î¿¼¹«Ê½K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
ÆäÖÐn=a+b+c+d£©
¿¼µã£º¶ÀÁ¢ÐÔ¼ìÑéµÄÓ¦ÓÃ
רÌ⣺¼ÆËãÌâ,¸ÅÂÊÓëͳ¼Æ
·ÖÎö£º£¨¢ñ£©¸ù¾ÝÔÚÈ«²¿50ÈËÖÐËæ»ú³éÈ¡1È˳鵽»¼Ðķμ²²¡µÄ¸ÅÂÊΪ
3
5
£¬¿ÉµÃ»¼Ðķμ²²¡µÄÈËÊý£¬¼´¿ÉµÃµ½ÁÐÁª±í£»
£¨¢ò£©ÀûÓù«Ê½ÇóµÃK2£¬ÓëÁÙ½çÖµ±È½Ï£¬¼´¿ÉµÃµ½½áÂÛ£®
£¨¢ó£©ÔÚ»¼Ðķμ²²¡µÄ10λŮÐÔÖУ¬ÓÐ3λÓÖ»¼ÓÐθ²¡£¬¼ÇÑ¡³ö»¼Î¸²¡µÄÅ®ÐÔÈËÊýΪ¦Î£¬Ôò¦Î·þ´Ó³¬¼¸ºÎ·Ö²¼£¬¼´¿ÉµÃµ½¦ÎµÄ·Ö²¼ÁС¢ÊýѧÆÚÍûÒÔ¼°·½²î£®
½â´ð£º ½â£º£¨¢ñ£©ÁÐÁª±í²¹³äÈçÏ¡­£¨2·Ö£©
»¼Ðķμ²²¡²»»¼Ðķμ²²¡ºÏ¼Æ
ÄÐ20525
Ů101525
ºÏ¼Æ302050
£¨¢ò£©ÒòΪK2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
£¬ËùÒÔK2¡Ö8.333
ÓÖP£¨k2¡Ý7.789£©=0.005=0.5%£®ÄÇô£¬ÎÒÃÇÓÐ99.5%µÄ°ÑÎÕÈÏΪ»¼Ðķμ²²¡ÓëÐÔ±ðÓйء­£¨4·Ö£©
£¨¢ó£©¦ÎµÄËùÓпÉÄÜȡֵ£º0£¬1£¬2£¬3P(¦Î=0)=
C
3
7
C
3
10
=
35
120
=
7
24
£»
P(¦Î=1)=
C
1
3
C
2
7
C
3
10
=
63
120
=
21
40
£»P(¦Î=2)=
C
2
3
C
1
7
C
3
10
=
21
120
=
7
40
£»P(¦Î=3)=
C
3
3
C
3
10
=
1
120
¡­£¨7·Ö£©
·Ö²¼ÁÐÈçÏ£º¡­£¨8·Ö£©
¦Î0123
P
7
24
21
40
7
40
1
120
ÔòE¦Î=0¡Á
7
24
+1¡Á
21
40
+2¡Á
7
40
+3¡Á
1
120
=
9
10
D¦Î=(0-
9
10
)2¡Á
7
24
+(1-
9
10
)2¡Á
21
40
+(2-
9
10
)2¡Á
7
40
+(3-
9
10
)2¡Á
1
120
=
49
100
E¦Î=
9
10
£¬D¦Î=
49
100
¡­£¨10·Ö£©
µÍ̼Éú»î£¬½ÚÄܼõÅŵȣ¨»Ø´ð»ù±¾ÕýÈ·¾ÍµÃ·Ö£©¡­£¨12·Ö£©
µãÆÀ£º±¾Ì⿼²é¶ÀÁ¢ÐÔ¼ìÑé֪ʶ£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÖ±Ïßl£ºmx-2y+2m=0£¨m¡ÊR£©ºÍÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©£¬ÍÖÔ²CµÄÀëÐÄÂÊΪ
2
2
£¬Á¬½ÓÍÖÔ²µÄËĸö¶¥µãÐγÉËıßÐεÄÃæ»ýΪ2
2
£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©Ö±ÏßlÓëÍÖÔ²CÓÐÁ½¸ö²»Í¬µÄ½»µã£¬ÇóʵÊýmµÄȡֵ·¶Î§£»
£¨3£©µ±m=2ʱ£¬ÉèÖ±ÏßlÓëyÖáµÄ½»µãΪP£¬MΪÍÖÔ²CÉϵ͝µã£¬ÇóÏß¶ÎPM³¤¶ÈµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª2013Äê2ÔÂ10ÈÕ´º½Ú£®Ä³Ê߲˻ùµØ2013Äê2ÔÂ2ÈÕÓÐÒ»Åú»Æ¹Ï½øÈëÊг¡ÏúÊÛ£¬Í¨¹ýÊг¡µ÷²é£¬Ô¤²â»Æ¹ÏµÄ¼Û¸ñf£¨x£©£¨µ¥Î»£ºÔª/kg£©Óëʱ¼äx£¨x±íʾ¾à2ÔÂ10ÈÕµÄÌìÊý£¬µ¥Î»£ºÌ죬x¡Ê£¨0£¬8]£©µÄÊý¾ÝÈçÏÂ
ʱ¼äx862
¼Û¸ñf£¨x£©8420
£¨¢ñ£©¸ù¾ÝÉϱíÊý¾Ý£¬´ÓÏÂÁк¯ÊýÖÐѡȡһ¸öº¯ÊýÃèÊö»Æ¹Ï¼Û¸ñf£¨x£©ÓëÉÏÊÐʱ¼äxµÄ±ä»¯¹ØÏµ£ºf£¨x£©=ax+b£¬f£¨x£©=ax2+bx+c£¬f£¨x£©=a•bx£¬f£¨x£©=a•logbx£¬ÆäÖÐa¡Ù0£»²¢Çó³ö´Ëº¯Êý£»
£¨¢ò£©ÎªÁË¿ØÖƻƹϵļ۸ñ£¬²»Ê¹»Æ¹ÏµÄ¼Û¸ñ¹ýÓÚÆ«¸ß£¬¾­¹ýÊг¡µ÷ÑУ¬ÒýÈëÒ»¿ØÖƺ¯Êýh£¨x£©=ex-£¨12-2m£©x+39£¨x£¾0£©£¬m³ÆÎª¿ØÖÆÏµÊý£®ÇóÖ¤£ºµ±m£¾ln2-1ʱ£¬×ÜÓÐf£¨x£©£¼h£¨x£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèË«ÇúÏßS£º
x2
a2
-
y2
b2
=1£¬M£¨x0£¬y0£©∉S£¬ÇÒx0y0¡Ù0£®N£¨¦Ëx0£¬¦Ëy0£©£¬ÆäÖÐ
1
¦Ë
=
x02
a2
-
y02
b2
£®¹ýµãNµÄÖ±ÏßL½»Ë«ÇúÏßSÓÚA£¬BÁ½µã£¬¹ýµãB×÷бÂÊΪ
b2x0
a2y0
µÄÖ±Ïß½»Ë«ÇúÏßSÓÚµãC£®ÇóÖ¤£ºA£¬M£¬CÈýµã¹²Ïߣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¶þ´Îº¯Êýf£¨x£©Âú×㣺¢Ùµ±x=1ʱÓм«Öµ£»¢ÚͼÏóÓëyÖá½»µãµÄ×Ý×ø±êΪ-3£¬ÇÒÔڸõ㴦µÄÇÐÏßÓëÖ±Ïßx=2y-4´¹Ö±£®
£¨1£©Çóf£¨1£©µÄÖµ£»
£¨2£©Èôº¯Êýg£¨x£©=f£¨lnx£©£¬x¡Ê£¨1£¬+¡Þ£©ÉÏÈÎÒâÒ»µã´¦µÄÇÐÏßбÂʺã´óÓÚa2-a-2£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¼¯ºÏM={x|
1
2
¡Üx¡Ü3}£¬º¯Êýg£¨x£©=bx£¬f£¨x£©=ln£¨ax2-2x+b£©£¬Èôº¯Êýf£¨x£©µÄ¶¨ÒåÓòΪN£¬ÇÒM¡ÉN=[
1
2
£¬
2
3
£©£¬M¡ÈN=£¨-2£¬3]
£¨¢ñ£©ÇóʵÊýa£¬bµÄÖµ£»
£¨¢ò£©Çó¹ØÓÚxµÄ·½³Ìg£¨x£©+g£¨-|x|£©=2µÄʵÊý½â£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¹ýÖ±ÏßlÍâµÄÒ»µãPÒýÁ½ÌõÖ±ÏßPA£¬PBºÍÖ±Ïßl·Ö±ðÏཻÓÚA£¬BÁ½µã£¬ÇóÖ¤£ºÈýÌõÖ±ÏßPA£¬PB£¬l¹²Ã森

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬ÀëÐÄÂÊΪ
2
2
£¬¹ýF1µÄÖ±Ïßl1½»ÍÖÔ²ÓÚA¡¢BÁ½µã£¬ÇÒ¡÷ABF2µÄÖܳ¤Îª4
2
£®
£¨¢ñ£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©¹ýF2ÇÒÓël1´¹Ö±µÄÖ±Ïßl2½»ÍÖÔ²ÓÚC¡¢DÁ½µã£¬ÇóÖ¤£º
1
|AB|
+
1
|CD|
Ϊ¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ãݺ¯Êýf£¨x£©=x¦Á¾­¹ýµãP£¨2£¬4£©£¬Ôòf£¨
2
£©=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸