分析 由∠A=90°,$|\overrightarrow{AB}|$=$|\overrightarrow{AC}|$.不妨设$\overrightarrow{AB}$=(m,0),$\overrightarrow{AC}$=(0,m),又$\overrightarrow{AB}=\overrightarrow a+\overrightarrow b$,$\overrightarrow{AC}=\overrightarrow a-\overrightarrow b$,$\overrightarrow a=(cosθ,sinθ),θ∈R$,可得$\overrightarrow{AB}$+$\overrightarrow{AC}$=(m,m)=2$\overrightarrow{a}$=2(cosθ,sinθ),解得θ,m即可得出.
解答 解:∵∠A=90°,$|\overrightarrow{AB}|$=$|\overrightarrow{AC}|$,
不妨设$\overrightarrow{AB}$=(m,0),$\overrightarrow{AC}$=(0,m),
又$\overrightarrow{AB}=\overrightarrow a+\overrightarrow b$,$\overrightarrow{AC}=\overrightarrow a-\overrightarrow b$,$\overrightarrow a=(cosθ,sinθ),θ∈R$,
∴$\overrightarrow{AB}$+$\overrightarrow{AC}$=(m,m)=2$\overrightarrow{a}$=2(cosθ,sinθ),
∴cosθ=sinθ,解得tanθ=1,取$θ=\frac{π}{4}$.
∴$\overrightarrow{a}$=$(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})$.
∴$\overrightarrow{AB}$=$(\sqrt{2},0)$,$\overrightarrow{AC}$=$(0,\sqrt{2})$,
∴S△ABC=$\frac{1}{2}×\sqrt{2}×\sqrt{2}$=1,
故答案为:1.
点评 本题考查了向量的线性运算、三角函数求值、模的计算公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{a}$<$\frac{1}{b}$ | B. | $\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$>$\frac{a+b}{2}$ | ||
| C. | $\root{3}{-a}$<$\root{3}{-b}$ | D. | log0.3$\frac{1}{a}$<log0.3$\frac{1}{b}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| P(K2>k0) | 0.50 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| K0 | 0.445 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com