分析 根据已知可得1≤k+b≤2,2≤2k+b≤3,f(3)=3k+b=-(k+b)+2(2k+b),结合不等式的基本性质,可得f(3)的取值范围.
解答 解:∵f(x)=kx+b(k≠0),1≤f(1)≤2,2≤f(2)≤3,
∴1≤k+b≤2,2≤2k+b≤3,
∴设f(3)=3k+b=x(k+b)+y(2k+b),
则x=-1,y=2,
∵-2≤-(k+b)≤-1,4≤2(2k+b)≤6,
∴2≤3k+b=-(k+b)+2(2k+b)≤5,
即f(3)的取值范围为[2,5]
点评 本题考查的知识点是不等式的基本性质,其中将f(3)=3k+b分解为:-(k+b)+2(2k+b),是解答的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com