精英家教网 > 高中数学 > 题目详情
抛物线的顶点在原点,焦点在x轴的正半轴上,直线x+y-1=0与抛物线相交于A、B两点,且|AB|=
8
6
11

(1)求抛物线的方程;
(2)在x轴上是否存在一点C,使△ABC为正三角形?若存在,求出C点的坐标;若不存在,请说明理由.
分析:(1)设所求抛物线的方程为y2=2px,将直线的方程代入抛物线的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用弦长公式即可求得P值,从而解决问题.
(2)对于存在性问题,可先假设存在,即假设x轴上存在满足条件的点C(x0,0),再利用△ABC为正三角形,求出CD的长,若出现矛盾,则说明假设不成立,即不存在;否则存在.
解答:解:(1)设所求抛物线的方程为y2=2px(p>0),
y2=2px
x+y-1=0
消去y,
得x2-2(1+p)x+1=0.
设A(x1,y1),B(x2,y2),
则x1+x2=2(1+p),
x1•x2=1.∵|AB|=
8
6
11

(1+k2)[(x1+x2)2-4x1x2]
=
8
6
11

∴121p2+242p-48=0,
∴p=
2
11
或-
24
11
(舍).
∴抛物线的方程为y2=
4
11
x.

(2)设AB的中点为D,则D(
13
11
,-
2
11
)

假设x轴上存在满足条件的点C(x0,0),∵△ABC为正三角形,
∴CD⊥AB,∴x0=
15
11

∴C(
15
11
,0
),∴|CD|=
2
2
11

又∵|CD|=
3
2
|AB|=
12
2
11

故矛盾,∴x轴上不存在点C,使△ABC为正三角形.
点评:本题主要考查了椭圆的标准方程,以及直线与圆锥曲线的综合问题,属于基础题.突出考查了数形结合、函数与方程、等价转化等数学思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

13、抛物线的顶点在原点,对称轴是坐标轴,且焦点在直线x-y+4=0上,则此抛物线方程为
y2=-16x或x2=16y

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线的顶点在原点,准线方程为x=-2,则抛物线的方程是(  )
A、y2=-8xB、y2=8xC、y2=-4xD、y2=4x

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏一模)本题主要考查抛物线的标准方程、简单的几何性质等基础知识,考查运算求解、推理论证的能力.
如图,在平面直角坐标系xOy,抛物线的顶点在原点,焦点为F(1,0).过抛物线在x轴上方的不同两点A、B,作抛物线的切线AC、BD,与x轴分别交于C、D两点,且AC与BD交于点M,直线AD与直线BC交于点N.
(1)求抛物线的标准方程;
(2)求证:MN⊥x轴;
(3)若直线MN与x轴的交点恰为F(1,0),求证:直线AB过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线的顶点在原点,对称轴是坐标轴,且焦点在直线x-y+2=0上,则此抛物线方程为
y2=-8x或x2=8y
y2=-8x或x2=8y

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网实轴长为4
3
的椭圆的中心在原点,其焦点F1,,F2在x轴上.抛物线的顶点在原点O,对称轴为y轴,两曲线在第一象限内相交于点A,且AF1⊥AF2,△AF1F2的面积为3.
(Ⅰ)求椭圆和抛物线的标准方程;
(Ⅱ)过点A作直线l分别与抛物线和椭圆交于B,C,若
AC
=2
AB
,求直线l的斜率k.

查看答案和解析>>

同步练习册答案