精英家教网 > 高中数学 > 题目详情
已知f(x)=2sin(x+
θ
2
)cos(x+
θ
2
)+2
3
cos2(x+
θ
2
)-
3

(1)化简f(x)的解析式;
(2)若0≤θ≤π,求θ使函数f(x)为奇函数;
(3)在(2)成立的条件下,求满足f(x)=1,x∈[-π,π]的x的集合.
(1)f(x)=sin(2x+θ)+2
3
1+cos(2x+θ)
2
-
3
=sin(2x+θ)+
3
cos(2x+θ)=2sin(2x+θ+
π
3
).
(2)由函数f(x)为奇函数可得 f(0)=0,所以2sin(θ+
π
3
)=0,即θ+
π
3
=kπ,k∈z,由 0≤θ≤π,所以θ=
3

(3)f(x)=2sin(2x+θ+
π
3
)=-2sin2x=1,所以sin2x=-
1
2

2x=-
π
6
+2kπ或2x=
6
+2kπ
,所以,x=kπ-
π
12
  或 x=kπ+
12

在x∈[-π,π]中,x∈{-
π
12
,-
12
12
11π
12
}
.(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=2sin(2x+
π
6
)+a+1(a为常数).
(1)求f(x)的递增区间;
(2)若x∈[0,
π
2
]时,f(x)的最大值为4,求a的值;
(3)求出使f(x)取最大值时x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2sin(
x
2
+
π
6
)-1,x∈R.
(1)求函数f(x)的最小正周期和单调增区间.
(2)函数f(x)的图象可以由函数f(x)=sin
x
2
(x∈R)的图象经过怎样的变换得到?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2sin(x+
π
6
)(x∈R).
(Ⅰ)求函数f(x)的周期和最大值;
(Ⅱ)若f(A-
π
6
)=
2
3
,求cos2A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•孝感模拟)已知f(x)=2sin(ωx+φ)的部分图象如图所示,则f(x)的表达式为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2sin(π-x)sin(
π
2
-x)

(1)求f(x)的最小正周期.
(2)若A,B,C是锐角△ABC的内角,其对边分别是a,b,c,且f(
B
2
)=
3
2
,b2=ac试判断△ABC的形状.

查看答案和解析>>

同步练习册答案