精英家教网 > 高中数学 > 题目详情
函数f(x)=Acos2(ωx+φ)+1(A>0,ω>0,0<φ<
π2
)的最大值为3,它的图象相邻的两个对称轴之间的距离为2,图象在y轴交点的坐标为(0,2),
(1)求函数f(x)的解析式;
(2)设数列an=f(n)(n∈N*),Sn是它的前n项和,求S100
分析:(1)先将原函数用降幂公式转化为一个角的一个三角函数的形式,由相邻两对称轴间的距离为2可知周期求得ω,由最大值为3,求得A,又由图象经过点(0,2),求得φ,进而得f(x)解析式.
(2)求出数列的前几项,判断数列是周期数列,求出一个周期的和.然后求解S100
解答:解:(1)将原函数f(x)=Acos2(ωx+φ)+1转化为:f(x)=
A
2
cos(2ωx+2φ)+
A
2
+1
相邻两对称轴间的距离为2可知函数的周期为:4,则2ω=
4
=
π
2
,ω=
π
4

由最大值为3,可知A=2
又∵图象经过点(0,2),
∴cos2φ=0
∴2φ=kπ+
π
2
0<φ<
π
2
,φ=
π
4

∴f(x)=cos(
π
2
x+
π
2
)+2=-sin
π
2
x
+2.
(2)∵f(1)=1,f(2)=2,f(3)=3,f(4)=2,f(5)=1…所以数列{an}是周期数列,T=4,
f(1)+f(2)+f(3)+f(4)=8,
S100=f(1)+f(2)+f(3)+…+f(100)=8×25=200.
点评:本题主要考查了降幂公式和三角函数中各参数的意义,由y=Asin(ωx+φ)的部分图象确定其解析式,数列的求和,考查分析问题解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数g(x)=
3
4
-
1
2
sinxcos-
3
2
sin2
x的图象按向量
m
=(-
π
4
1
2
)平移得到函数f(x)=acos2(x+
π
3
)+b的图象.
(1)求实数a、b的值;
(2)设函数φ(x)=g(x)-
3
f(x),x∈[0,
π
2
],求函数φ(x)的单调递增区间和最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Acos2ωx+2(A>0,ω>0)的最大值为6,其相邻两条对称轴间的距离为4,则f(2)+f(4)+f(6)+…+f(20)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Acos2(ωx+φ)+1(A>0,ω>0)的最大值为3,f(x)的图象在y轴上的截距为2,其相邻两对称轴间的距离为2,则f(1)+f(2)+f(3)+…+f(100)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Acos2(ωx+φ)+1(A>0,ω>0)的最大值为3,f(x)的图象与y轴的交点坐标为(0,2),其相邻两条对称轴间的距离为2,则f(1)+f(2)+…f(2010)=
 

查看答案和解析>>

同步练习册答案