精英家教网 > 高中数学 > 题目详情
已知椭圆 
x2
a2
+
y2
b2
=1
过定点A(1,0),且焦点在x轴上,椭圆与曲线|y|=x的交点为B、C.现有以A为焦点,过B,C且开口向左的抛物线,其顶点坐标为M(m,0),当椭圆的离心率满足 
2
3
e2<1
时,求实数m的取值范围.
分析:由椭圆过定点A(1,0),知a=1 , c=
1-b2
e=
1-b2
,由
2
3
e2<1
,知0<b<
3
3
.由对称性知,所求抛物线只要过椭圆与射线y=x(x≥0)的交点,就必过椭圆与射线y=-x(x≥0)的交点.由此能求出实数m的取值范围.
解答:解:∵椭圆 
x2
a2
+
y2
b2
=1
过定点A(1,0),
a=1 , c=
1-b2
e=
1-b2

2
3
e2<1
,∴
2
3
<1-b2<1

0<b<
3
3

由对称性知,所求抛物线只要过椭圆与射线y=x(x≥0)的交点,就必过椭圆与射线y=-x(x≥0)的交点.
联立方程 
y=x (x≥0)
x2+
y2
b2
=1

解得 x=y=
b
1+b2

0<b<
3
3

0<x<
1
2

设抛物线方程为:y2=-2p(x-m),p>0,m>1.
p
2
=m-1

∴y2=4(1-m)(x-m)①
把 y=x,0<x<
1
2
代入①,
得x2+4(m-1)x-4m(m-1)=0,m>1.
令f(x)=x2+4(m-1)x-4m(m-1),m>1,
∵f(x)在(0 , 
1
2
)
内有根且单调递增,
f(0)=-4m(m-1)<0
f(
1
2
)=
1
4
+2(m-1)-4m(m-1)>0

m>1 或 m<0
3-
2
4
< m <
3+
2
4

综上得实数m的取值范围:{m|1<m<
3+
2
4
}.
点评:本题考查直线和椭圆的位置关系的综合应用,考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>0,b>0),A是椭圆长轴的一个端点,B是椭圆短轴的一个端点,F为椭圆的一个焦点.若AB⊥BF,则该椭圆的离心率为(  )
A、
5
+1
2
B、
5
-1
2
C、
5
+1
4
D、
5
-1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知椭圆
x2
a2
+
y2
b2
=1 (a>b>0)
的长轴为AB,过点B的直线l与x轴垂直.直线(2-k)x-(1+2k)y+(1+2k)=0(k∈R)所经过的定点恰好是椭圆的一个顶点,且椭圆的离心率e=
3
2

(1)求椭圆的标准方程;
(2)设P是椭圆上异于A、B的任意一点,PH⊥x轴,H为垂足,延长HP到点Q使得HP=PQ,连接AQ延长交直线l于点M,N为MB的中点.试判断直线QN与以AB为直径的圆O的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1
(a>0,b>0)的左焦点为F,右顶点为A,上顶点为B,若BF⊥BA,则称其为“优美椭圆”,那么“优美椭圆”的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点分别为F1,F2,左顶点为A,若|F1F2|=2,椭圆的离心率为e=
1
2

(Ⅰ)求椭圆的标准方程,
(Ⅱ)若P是椭圆上的任意一点,求
PF1
PA
的取值范围
(III)直线l:y=kx+m与椭圆相交于不同的两点M,N(均不是长轴的顶点),AH⊥MN垂足为H且
AH
2
=
MH
HN
,求证:直线l恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的焦点为F1、F2,点B是椭圆短轴的一个端点,且∠F1BF2=90°,则椭圆的离心率e等于
2
2
2
2

查看答案和解析>>

同步练习册答案