精英家教网 > 高中数学 > 题目详情
化简
sin(α-
π
2
)cos(
2
+α)tan(π-α)
tan(-π-α)sin(-π-α)
=
-cosα
-cosα
分析:利用诱导公式直接化简表达式,求出结果即可.
解答:解:
sin(α-
π
2
)cos(
2
+α)tan(π-α)
tan(-π-α)sin(-π-α)

=
cosαsinαtanα
-tanαsinα

=-cosα.
故答案为:-cosα.
点评:本题考查诱导公式的应用,正确利用诱导公式是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)化简
sin(2π-α)•sin(π+α)•cos(-π+α)sin(3π-α)•cos(π+α)

(2)求函数y=2-sin2x+cosx的最大值及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简sin(
π
2
+α)
等于(  )
A、cosαB、sinα
C、-cosαD、-sinα

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)化简
sin(2π-α)cos(π+α)
cos(α-π)cos(
π
2
-α)

(2)tanx=2,求2sin2x-sinxcosx+cos2x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)化简
sin(2π-α)cos(π+α)
cos(π-α)sin(3π-α)sin(-α-π)

(2)求值:
3
tan12°-3
sin12°(4cos212°-2)

查看答案和解析>>

同步练习册答案