精英家教网 > 高中数学 > 题目详情
已知数列{an}的满足a1=3,an-3an-1=-3n(n≥2).
(1)求证:数列{
an
3n
}
是等差数列;
(2)求数列{an}的通项公式;
(3)求数列{an}的前n项和Sn
(1)证明:∵an-3an-1=-3n(n≥2)
an
3n
-
an-1
3n-1
=-1
a1
3
=
3
3
=1
(4分)
∴数列{
an
3n
}
是以-1为公差,1为首项的等差数列.(5分)
(2)由(1)得
an
3n
=-n+2
,∴an=(2-n)•3n(6分)
(3)由(2)得Sn=1×3+0×32+(-1)×33+…+(3-n)•3n-1+(2-n)•3n(7分)
3Sn=1×32+0×33+(-1)×34+…+(3-n)•3n+(2-n)•3n+1(9分)
两式相减得,-2Sn=3-(32+33+34+…+3n)-(2-n)3n+1=3-
9×(3n-1-1)
3-1
-(2-n)3n+1
(12分)
整理得:Sn=-
15+(2n-5)•3n+1
4
(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题


观察以下各式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,你得到的一般性结论是                     .(要求:用n的表达式表示,其中n).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知递增的等比数列{an}的前三项之积为512,且这三项分别依次减去1、3、9后又成等差数列.
(1)求数列{an}的通项公式;
(2)若Tn=
1
a1
+
2
a2
+
3
a3
+…+
n
an
,求Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若数列{an}通项公式为an=
1
n(n+1)
,则数列{an}的前5项和为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

数列{an}是等差数列,Sn是前n项和,a4=3,S5=25
(1)求数列{an}的通项公式an
(2)设bn=|an|,求b1+b2+…+bn

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

数列
1
1+2
1
1+2+3
,…
1
1+2+…+n
的前n项和为(  )
A.
n
n+1
B.
2n
n+1
C.
n
n+2
D.
n
2(n+1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在数列{an}中,a1=-6×210,点(n,2a+1-an)在直线y=211x上,设bn=an+1-an+t,数列{bn}是等比数列.
(1)求出实数t;(2)令cn=|log2bn|,问从第几项开始,数列{cn}中连续20项之和为100?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等差数列{an}满足a3=6,a4+a6=20
(1)求通项an
(2)设{bn-an}是首项为1,公比为3的等比数列,求数列{bn}的通项公式及其前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

数列中,,若前项和,则项数等于(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案