£¨2012•½­ËÕ¶þÄ££©ÒÑÖª¸÷Ïî¾ùΪÕýÕûÊýµÄÊýÁÐ{an}Âú×ãan£¼an+1£¬ÇÒ´æÔÚÕýÕûÊýk£¨k£¾1£©£¬Ê¹µÃa1+a2+¡­+ak=a1•a2¡­ak£¬an+k=k+an£¨n¡ÊN*£©£®
£¨1£©µ±k=3£¬a1a2a3=6ʱ£¬ÇóÊýÁÐ{an}µÄÇ°36ÏîµÄºÍS36£»
£¨2£©ÇóÊýÁÐ{an}µÄͨÏîan£»
£¨3£©ÈôÊýÁÐ{bn}Âú×ãbnbn+1=-21•(
12
)an-8
£¬ÇÒb1=192£¬ÆäÇ°nÏî»ýΪTn£¬ÊÔÎÊnΪºÎֵʱ£¬TnÈ¡µÃ×î´óÖµ£¿
·ÖÎö£º£¨1£©Éècn=a3n-2+a3n-1+a3n£¬ÓÉan+3=3+an£¬µÃcn+1=cn+9£¬ËùÒÔÊýÁÐ{cn}Êǹ«²îΪ9µÄµÈ²îÊýÁУ¬ÓÉ´Ë¿ÉÇóÊýÁÐ{an}µÄÇ°36ÏîµÄºÍS36£»
£¨2£©È·¶¨a1=1£¬a2=2£¬a3=3£¬ÇÒan+3=3+an£¬´Ó¶ø¿ÉÇóÊýÁеÄͨÏ
£¨3£©¸ù¾Ýbnbn+1=-21•(
1
2
)an-8
£¬¿ÉµÃbn+1bn+2=-21•(
1
2
)an+1-8
£¬´Ó¶ø¿ÉµÃ{b2n}£¬{b2n-1}¶¼ÊÇÒÔ
1
2
Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬ÓÉ´Ë¿ÉÇóÊýÁÐ{bn}µÄͨÏ½øÒ»²½È·¶¨n¡Ý13£¬nΪÆæÊýʱ£¬|T2|£¼|T4|£¼¡­£¼|T12|£¬|T12|£¾|T14|£¾¡­£»nΪżÊýʱ£¬|T1|£¼|T3|£¼¡­£¼|T13|£¬|T13|£¾|T15|£¾¡­£¬Óɴ˿ɵýáÂÛ£®
½â´ð£º½â£º£¨1£©µ±k=3£¬a1a2a3=6£¬Ôòa1+a2+a3=6£®
Éècn=a3n-2+a3n-1+a3n£¬ÓÉan+3=3+an£¬µÃcn+1=cn+9£¬ËùÒÔÊýÁÐ{cn}Êǹ«²îΪ9µÄµÈ²îÊýÁУ¬
¹ÊS36=c1+c2+¡­+c12=12¡Á6+
12¡Á11
2
¡Á9=666
£®¡­£¨4·Ö£©
£¨2£©Èôk=2ʱ£¬a1+a2=a1•a2£¬ÓÖa1£¼a2£¬
ËùÒÔa1•a2£¼2a2£¬ËùÒÔa1=1£¬´Ëʱ1+a2=a2£¬Ã¬¶Ü£®  ¡­£¨6·Ö£©
Èôk=3ʱ£¬a1+a2+a3=a1•a2•a3£¬ËùÒÔa1•a2•a3£¼3a3£¬a1•a2£¼3£¬
ËùÒÔa1=1£¬a2=2£¬a3=3£¬Âú×ãÌâÒ⣮ ¡­£¨8·Ö£©
Èôk¡Ý4ʱ£¬a1+a2+¡­+ak=a1•a2•¡­•ak£¬ËùÒÔa1•a2•¡­•ak£¼kak£¬¼´a1•a2•¡­•ak-1£¼k£¬
ÓÖÒòΪa1•a2•¡­•ak-1£¾1¡Á2¡Á¡­¡Á£¨k-1£©¡Ý2k-2£¾k£¬ËùÒÔk¡Ý4²»Âú×ãÌâÒ⣮¡­£¨10·Ö£©
ËùÒÔ£¬a1=1£¬a2=2£¬a3=3£¬ÇÒan+3=3+an£¬
ËùÒÔa3n-2=a1+3£¨n-1£©=3n-2£¬a3n-1=a2+3£¨n-1£©=3n-1£¬a3n=a3+3£¨n-1£©=3n£¬
¹Êan=n£®   ¡­£¨12·Ö£©
£¨3£©ÒòΪbnbn+1=-21•(
1
2
)an-8
£¬ËùÒÔbn+1bn+2=-21•(
1
2
)an+1-8

ËùÒÔ
bn+2
bn
=
1
2
£¬ËùÒÔ{b2n}£¬{b2n-1}¶¼ÊÇÒÔ
1
2
Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬
ËùÒÔbn=
3•26•(
1
2
)
n-1
2
£¬n£¾1£¬nΪÆæÊý
-14¡Á(
1
2
)
n
2
-1
£¬n£¾2£¬nΪżÊý
   ¡­£¨14·Ö£©
Áî|bn•bn+1|£¼1£¬¼´|-21•(
1
2
)
n-8
|£¼1
£¬¡à(
1
2
)n-8£¼
1
21
£¬
ËùÒÔn¡Ý13£¬nΪÆæÊýʱ£¬ÓÐ|b1•b2|£¾1£¬|b3•b4|£¾1£¬¡­£¬|b11•b12|£¾1£¬|b13b14|£¼1£¬|b15•b16|£¼1£¬
´Ó¶ø|T2|£¼|T4|£¼¡­£¼|T12|£¬|T12|£¾|T14|£¾¡­£¬
nΪżÊýʱ£¬ÓÐ|b2•b3|£¾1£¬|b4•b5|£¾1£¬¡­£¬|b12•b13|£¾1£¬|b14•b15|£¼1£¬|b16•b17|£¼1£¬
´Ó¶ø|T1|£¼|T3|£¼¡­£¼|T13|£¬|T13|£¾|T15|£¾¡­£¬
×¢Òâµ½T12£¾0£¬T13£¾0£¬ÇÒT13=b13•T12=3T12£¾T12£¬
ËùÒÔÊýÁÐ{bn}µÄÇ°nÏî»ýTn×î´óʱnµÄֵΪ13£® ¡­
µãÆÀ£º±¾Ì⿼²éÊýÁеÄͨÏîÓëÇóºÍ£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬È·¶¨ÊýÁеÄÐÔÖÊÊǹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•½­ËÕ¶þÄ££©Éèm£¬nÊÇÁ½Ìõ²»Í¬µÄÖ±Ïߣ¬¦Á£¬¦ÂÊÇÁ½¸ö²»Í¬µÄƽÃ棬¸ø³öÏÂÁÐÃüÌ⣺
£¨1£©Èô¦Á¡Î¦Â£¬m?¦Â£¬n?¦Á£¬Ôòm¡În£»
£¨2£©Èô¦Á¡Î¦Â£¬m¡Í¦Â£¬n¡Î¦Á£¬Ôòm¡Ín£»
£¨3£©Èô¦Á¡Í¦Â£¬m¡Í¦Á£¬n¡Î¦Â£¬Ôòm¡În£»
£¨4£©Èô¦Á¡Í¦Â£¬m¡Í¦Á£¬n¡Í¦Â£¬Ôòm¡Ín£®
ÉÏÃæÃüÌâÖУ¬ËùÓÐÕæÃüÌâµÄÐòºÅΪ
£¨2£©£¬£¨4£©
£¨2£©£¬£¨4£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•½­ËÕ¶þÄ££©Èçͼ£¬ÒÑÖªA¡¢BÊǺ¯Êýy=3sin£¨2x+¦È£©µÄͼÏóÓëxÖáÁ½ÏàÁÚ½»µã£¬CÊÇͼÏóÉÏA£¬BÖ®¼äµÄ×îµÍµã£¬Ôò
AB
AC
=
¦Ð2
8
¦Ð2
8
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•½­ËÕ¶þÄ££©Èçͼ£¬ÔÚC³ÇÖܱßÒÑÓÐÁ½Ìõ¹«Â·l1£¬l2ÔÚµãO´¦½»»ã£¬Ïֹ滮ÔÚ¹«Â·l1£¬l2ÉÏ·Ö±ðÑ¡ÔñA£¬BÁ½´¦Îª½»»ãµã£¨ÒìÓÚµãO£©Ö±½ÓÐÞ½¨Ò»Ìõ¹«Â·Í¨¹ýC³Ç£¬ÒÑÖªOC=(
2
+
6
)km
£¬¡ÏAOB=75¡ã£¬¡ÏAOC=45¡ã£¬ÉèOA=xkm£¬OB=ykm£®
£¨1£©Çóy¹ØÓÚxµÄº¯Êý¹Øϵʽ²¢Ö¸³öËüµÄ¶¨ÒåÓò£»
£¨2£©ÊÔÈ·¶¨µãA¡¢BµÄλÖã¬Ê¹¡÷OABµÄÃæ»ý×îС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•½­ËÕ¶þÄ££©ÉèʵÊýn¡Ü6£¬Èô²»µÈʽ2xm+£¨2-x£©n-8¡Ý0¶ÔÈÎÒâx¡Ê[-4£¬2]¶¼³ÉÁ¢£¬Ôò
m4-n4
m3n
µÄ×îСֵΪ
-
80
3
-
80
3
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•½­ËÕ¶þÄ££©ÒÑ֪˫ÇúÏß
x2
m
-
y2
3
=1(m£¾0)
µÄÒ»Ìõ½¥½üÏß·½³ÌΪy=
3
2
x
£¬ÔòmµÄֵΪ
4
4
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸