(1)
h(x)=f(x)-g(x)=ln(x+1)-,x>-1,
h/(x)=-=,
令h
/(x)<0,得:-1<x<0,则h(x)在(-1,0)上单调递减;
令h
/(x)>0,得:x>0,则h(x)在(0,+∞)上单调递增.
故增区间为(0,+∞),减区间为(-1,0).
(2)由(1)知h(x)
min=h(0)=0,
则当x>-1时f(x)≥g(x)恒成立.
f/(x)=>0,
g/(x)=>0,
则f(x)、g(x)在(-1,+∞)上均单调递增.
易知:0>f(x
1)>g(x
1),f(x
2)>g(x
2)>0,
则-f(x
2)g(x
1)>-f(x
1)g(x
2),
即:f(x
1)g(x
2)-f(x
2)g(x
1)>0.
(3)
f2(x)-xg(x)=ln2(x+1)-,
令
F(x)=ln2(x+1)-,
则
F/(x)=-=| 2(x+1)ln(x+1)-(x2+2x) |
| (x+1)2 |
,
令G(x)=2(x+1)ln(x+1)-(x
2+2x),
则G
/(x)=2ln(x+1)-2x,
令H(x)=2ln(x+1)-2x,
则
H/(x)=-2=.
当-1<x<0时,H
/(x)>0,则H(x)在(-1,0)上单调递增;
当x>0时,H
/(x)<0,则H(x)在(0,+∞)上单调递减,
故H(x)≤H(0)=0,即G
/(x)≤0,
则G(x)在(-1,+∞)上单调递减.
当-1<x<0时,G(x)>G(0)=0,
即F
/(x)>0,则F(x)在(-1,0)上单调递增;
当x>0时,G(x)<G(0)=0,
即F
/(x)<0,则F(x)在(0,+∞)上单调递减,
故F(x)≤F(0)=0,
即f
2(x)-xg(x)≤0.