精英家教网 > 高中数学 > 题目详情

某商场经营一批进价是30元/台的小商品,在市场试验中发现,此商品的销售单价x(x取整数)元与日销售量y台之间有如下关系:

x
35
40
45
50
y
56
41
28
11
(1)画出散点图,并判断y与x是否具有线性相关关系?
(2)求日销售量y对销售单价x的线性回归方程;
(3)设经营此商品的日销售利润为P元,根据(1)写出P关于x的函数关系式,并预测当销售单价x为多少元时,才能获得最大日销售利润.

(1)见解析     (2)=-3x+161.5   (3) 销售单价为42元时,能获得最大日销售利润

解析解:(1)散点图如图所示,从图中可以看出这些点大致分布在一条直线附近,因此两个变量线性相关.

(2)∵×(35+40+45+50)=42.5.
×(56+41+28+11)=34.
=35×56+40×41+45×28+50×11=5 410.
=352+402+452+502=7 350.
≈-3.
=34-(-3)×42.5=161.5.
=-3x+161.5.
(3)依题意有
P=(-3x+161.5)(x-30)=-3x2+251.5x-4 845
=-3(x-)2-4 845.
∴当x=≈42时,P有最大值,约为426.
即预测销售单价为42元时,能获得最大日销售利润.
方法点评:该题属于线性回归问题,解答本类题目的关键首先应先通过散点图(或相关性检验求相关系数r)来分析两变量间的关系是否相关,然后再利用求回归方程的公式求解回归方程,在此基础上,借助回归方程对实际问题进行分析.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

汽车的碳排放量比较大,某地规定,从2014年开始,将对二氧化碳排放量超过130g/km的轻型汽车进行惩罚性征税.检测单位对甲、乙两品牌轻型汽车各抽取5辆进行二氧化碳排放量检测,记录如下(单位:g/km).

经测算得乙品牌轻型汽车二氧化碳排放量的平均值为
(1)从被检测的5辆甲品牌轻型汽车中任取2辆,则至少有一辆二氧化碳排放量超过的概率是多少?
(2)求表中的值,并比较甲、乙两品牌轻型汽车二氧化碳排放量的稳定性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在对某渔业产品的质量调研中,从甲,乙两地出产的该产品中各随机抽取10件,测量该产品中某种元素的含量(单位:毫克).
下表是测量数据的茎叶图:
规定:当产品中的此种元素含量毫克时为优质品.

(1)试用上述样本数据估计甲,乙两地该产品的优质品率(优质品件数/总件数);
(2)从乙地抽出的上述10件产品中,随机抽取3件,求抽到的3件产品中优质品数的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某种水果的单个质量在500g以上视为特等品.随机抽取1000个该水果,结果有50个特等品.将这50个水果的质量数据分组,得到下边的频率分布表.

(1)估计该水果的质量不少于560g的概率;
(2)若在某批水果的检测中,发现有15个特等品,据此估计该批水果中没有达到特等品的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:

日期
12月1日
12月2日
12月3日
12月4日
12月5日
温差x/℃
10
11
13
12
8
发芽数y
/颗
23
25
30
26
16
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程=bx+a;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某市为“市中学生知识竞赛”进行选拔性测试,且规定:成绩大于或等于90分的有参赛资格,90分以下(不包括90分)的被淘汰.若有500人参加测试,学生成绩的频率分布直方图如图.

(1)求获得参赛资格的人数;
(2)根据频率直方图,估算这500名学生测试的平均成绩;
(3)若知识竞赛分初赛和复赛,在初赛中每人最多有5次选题答题的机会,累计答对3题或答错3题即终止,答对3题者方可参加复赛.已知参赛者甲答对每一个问题的概率都相同,并且相互之间没有影响.已知他连续两次答错的概率为,求甲在初赛中答题个数的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个车间为了规定工时定额.需要确定加工零件所花费的时间,为此进行了10次试验.测得的数据如下:

零件数x/个
10
20
30
40
50
60
70
80
90
100
加工时间y/分
62
68
75
81
89
95
102
108
115
122
(1)y与x是否具有线性相关关系?
(2)如果y与x具有线性相关关系,求回归直线方程;
(3)根据求出的回归直线方程,预测加工200个零件所用的时间为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:

 
积极参加班级工作
不太主动参加班级工作
合计
学习积极性高
18
7
25
学习积极性一般
6
19
25
合计
24
26
50
(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?
(2)试运用独立性检验的思想方法点拨:学生的学习积极性与对待班级工作的态度是否有关系?并说明理由.(参考下表)
P(K2≥k)
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某中学高三年级从甲、乙两个班级各选出七名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生的平均分是85,乙班学生成绩的中位数是83.

(1)求xy的值;
(2)计算甲班七名学生成绩的方差.

查看答案和解析>>

同步练习册答案