精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+ax+b,g(x)=ex(cx+d).若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.
(1)求a,b,c,d的值;
(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.
(1)a=4,b=2,c=2,d=2
(2)[1,e2]
(1)∵曲线y=f(x)和曲线y=g(x)都过点P(0,2),
∴b=d=2.
∵f′(x)=2x+a,故f′(0)=a=4.
∵g′(x)=ex(cx+d+c),
∴g′(0)=2+c=4,故c=2.
从而a=4,b=2,c=2,d=2.
(2)令F(x)=kg(x)-f(x),则F′(x)=(kex-1)(2x+4),
由题设可得F(0)≥0,故k≥1,
令F′(x)=0得x1=-ln k,x2=-2,
①若1≤k<e2,则-2<x1≤0,
从而当x∈[-2,x1)时,F′(x)<0,
当x∈(x1+∞)时,F′(x)>0,
即F(x)在[-2,+∞)上最小值为F(x1)=2x1+2-x22-4x1-2=-x1(x1+2)≥0,此时f(x)≤kg(x)恒成立;
②若k=e2,F′(x)=(ex+2-1)(2x+4),
故F(x)在[-2,+∞)上单调递增,
因为F(-2)=0,所以f(x)≤kg(x)恒成立;
③若k>e2,则F(-2)=-2ke-2+2=-2e-2(k-e2)<0,
从而当x∈[-2,+∞)时,
f(x)≤kg(x)不可能恒成立.
综上所述k的取值范围为[1,e2].
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数() =,g ()=+
(1)求函数h ()=()-g ()的零点个数,并说明理由;
(2)设数列满足,证明:存在常数M,使得对于任意的,都有≤ .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数在R上存在导数,对任意的R,有,且(0,+)时,.若,则实数a的取值范围为(   )
A.[1,+∞)B.(-∞,1]C.(-∞,2]D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(2014·哈尔滨模拟)已知函数f(x)=x2+,g(x)=-m.若?x1∈[1,2],?x2∈[-1,1]使f(x1)≥g(x2),则实数m的取值范围是__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数在实数集上是单调函数,则m的取值范围是        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中
(1) 当时,求曲线在点处的切线方程;
(2) 求函数的单调区间及在上的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知f(x)=aln x+x2(a>0),若对任意两个不等的正实数x1,x2都有>2恒成立,则a的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)若函数内单调递增,求的取值范围;
(2)若函数处取得极小值,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数的导函数的图象如图所示,则函数的图象可能是(   )

A                B               C              D

查看答案和解析>>

同步练习册答案