精英家教网 > 高中数学 > 题目详情
已知函数,其中
(1) 当时,求曲线在点处的切线方程;
(2) 求函数的单调区间及在上的最大值.
(1);(2) 在区间,内为减函数,在区间内为增函数,上的最大值为1.

试题分析:(1)首先求得导函数,然后求得切线斜率,再利用点斜式求切线方程;(2)首先通过建立的变化情况如下表,然后确定出单调性,并确定出函数的极值,再与的值进行比较,进而可求得最值.
(1)当时,
,则
所以曲线在点处的切线方程为
(2)
由于,令,得到
变化时,的变化情况如下表:








0

0


(
极小值
&
极大值
(
 
在区间,内为减函数,在区间内为增函数.
故函数在点处取得极大值,且
,且<0,
上的最大值为1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知函数()的图象如图所示,则不等式的解集为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中是常数.
(1)当时,求曲线在点处的切线方程;
(2)若存在实数,使得关于的方程上有两个不相等的实数根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,曲线在点处的切线方程为
(1)求的值;
(2)如果当,且时,,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2+ax+b,g(x)=ex(cx+d).若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.
(1)求a,b,c,d的值;
(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设D是函数定义域内的一个子区间,若存在,使,则称的一个“次不动点”,也称在区间D上存在次不动点,若函数在区间上存在次不动点,则实数a的取值范围是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中m∈R.
(1)若0<m≤2,试判断函数f (x)=f1 (x)+f2 (x)的单调性,并证明你的结论;
(2)设函数 若对任意大于等于2的实数x1,总存在唯一的小于2的实数x2,使得g (x1) =" g" (x2) 成立,试确定实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三次函数的图象如图所示,则(      )
A.-1B.2C.-5D.-3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数=的导函数是(    )
A.y′=3B.y′=2
C.y′=3+D.y′=3+

查看答案和解析>>

同步练习册答案