精英家教网 > 高中数学 > 题目详情
10.在平面直角坐标系xOy中,抛物线C:y2=4x的焦点为F,P为抛物线C上一点,且PF=5,则点P的横坐标是4.

分析 由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,已知|PF|=5,则P到准线的距离也为5,即x+1=5,将p的值代入,进而求出x.

解答 解:∵抛物线y2=4x=2px,
∴p=2,
由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,
∴|PF|=x+1=5,
∴x=4,
故答案为:4

点评 活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.下列选项中,表示同一集合的是(  )
A.A={0,1},B={(0,1)}B.A={2,3},B={3,2}
C.A={x|-1<x≤1,x∈N},B={1}D.$A=∅,\;\;B=\{x|{x^{\frac{1}{2}}}≤0\}$
E.$A=∅,\;\;B=\{x|{x^{\frac{1}{2}}}≤0\}$   

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{{b}^{2}}$=1的焦点为F1(-5,0),F2(5,0),则双曲线的渐近线方程为(  )
A.3x±4y=0B.4x±3y=0C.4x±5y=0D.5x±4y=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.矩形ABCD中,|AB|=4,|BC|=3,$\overrightarrow{AE}=\frac{1}{3}\overrightarrow{AD}$,$\overrightarrow{CF}=\frac{1}{2}\overrightarrow{CD}$,若向量$\overrightarrow{BD}=x\overrightarrow{BE}+y\overrightarrow{BF}$,则x+y=$\frac{7}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.命题“若a=b,则|a|=|b|”的逆否命题是若|a|≠|b|,则a≠b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2c(c>0),左焦点为F,点M的坐标为(-2c,0).若椭圆E上存在点P,使得PM=$\sqrt{2}$PF,则椭圆E离心率的取值范围是[$\frac{\sqrt{3}}{3},\frac{\sqrt{2}}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)为定义在R上的可导函数,且为偶函数,x≠0时,xf′(x)>0恒成立,则(  )
A.f(1)<f(-2)<f(3)B.f(-2)<f(1)<f(3)C.f(3)<f(-2)<f(1)D.f(3)<f(1)<f(-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在Rt△AOB中,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,|$\overrightarrow{OA}$|=$\sqrt{5}$,|$\overrightarrow{OB}$|=2$\sqrt{5}$,AB边上的高线为OD,点E位于线段OD上,若$\overrightarrow{OE}$•$\overrightarrow{EA}$=$\frac{3}{4}$,则向量$\overrightarrow{EA}$在向量$\overrightarrow{OD}$上的投影为(  )
A.$\frac{3}{2}$B.1C.$\frac{1}{2}$或$\frac{3}{2}$D.1或$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知a<0,b>0,则使不等式|a-|x-1||+||x-1|-b|≥|a-b|等号成立的条件是(  )
A.-b≤x≤bB.1-b≤x≤1+bC.x≥1+bD.x≤1-b或x≥1+b

查看答案和解析>>

同步练习册答案