【题目】如图,在直三棱柱
中,
,四边形
是边长为6的正方形,直线
与平面
所成的角的正切值为3,点
为棱
上的动点,且
.
![]()
(1)当
为何值时,
平面
?
(2)当
时,求二面角
的正切值.
【答案】(1)
;(2)![]()
【解析】
(1)取
为坐标原点,
,
,
所在的直线分别为
,
,
轴建立空间直线坐标系.利用正方形的性质与已知可得:
平面
,于是
平面
.得到
就是直线
与平面平面
所成的角,可得
,利用
,
,解出即可.
(2)若
,设平面
的法向量为
.利用
,可得
,又平面
的法向量为
.利用
即可得出.
解:(1)取
为坐标原点,
,
,
所在的直线分别为
,
,
轴建立空间直线坐标系.
四边形
是边长为6的正方形,
.
,
.
又易知
平面
,
,又
,
平面
,
平面
.
平面
.
就是直线
与平面平面
所成的角,
,
,
设
,则点
,0,
,
,0,
,
,6,
,
,0,
,
,0,
.
![]()
,6,
,
,0,
,
,0,
.
由
,
,
解得
,由于
.
故当
时,
平面
.
(2)若
,则点
,0,
,
,0,
,
,6,
,
设平面
的法向量为
.
由
,得![]()
令
,得
,1,
,又平面
的法向量为
,1,
.
设二面角
的大小为
,则
,
,
.
即二面角
的正切值为2.
![]()
科目:高中数学 来源: 题型:
【题目】利用一半径为4cm的圆形纸片(圆心为O)制作一个正四棱锥.方法如下:
(1)以O为圆心制作一个小的圆;
(2)在小的圆内制作一内接正方形ABCD;
(3)以正方形ABCD的各边向外作等腰三角形,使等腰三角形的顶点落在大圆上(如图);
(4)将正方形ABCD作为正四棱锥的底,四个等腰三角形作为正四棱锥的侧面折起,使四个等腰三角形的顶点重合,问:要使所制作的正四棱锥体积最大,则小圆的半径为
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的方程为
,离心率
,且短轴长为4.
求椭圆
的方程;
已知
,
,若直线l与圆
相切,且交椭圆E于C、D两点,记
的面积为
,记
的面积为
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校在2013年的自主招生考试成绩中随机抽取40名学生的笔试成绩,按成绩共分成五组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示,同时规定成绩在85分以上的学生为“优秀”,成绩小于85分的学生为“良好”,且只有成绩为“优秀”的学生才能获得面试资格.
![]()
(1)求出第4组的频率,并补全频率分布直方图;
(2)根据样本频率分布直方图估计样本的中位数与平均数;
(3)如果用分层抽样的方法从“优秀”和“良好”的学生中共选出5人,再从这5人中选2人,那么至少有一人是“优秀”的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}满足a3=5,a4﹣2a2=3,又等比数列{bn}中,b1=3且公比q=3.
(1)求数列{an},{bn}的通项公式;
(2)若cn=an+bn,求数列{cn}的前n项和Sn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知菱形
与直角梯形
所在的平面互相垂直,其中
,
,
,
,
为
的中点
(Ⅰ)求证:
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)设
为线段
上一点,
,若直线
与平面
所成角的正弦值为
,求
的长.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某班学生喜欢数学是否与性别有关,对本班
人进行了问卷调查得到了如下的列联表,已知在全部
人中随机抽取
人抽到喜欢数学的学生的概率为
.
喜欢数学 | 不喜欢数学 | 合计 | |
男生 |
| ||
女生 |
| ||
合计 |
|
(1)请将上面的列联表补充完整(不用写计算过程);
(2)能否在犯错误的概率不超过
的前提下认为喜欢数学与性别有关?说明你的理由;
(3)现从女生中抽取
人进一步调查,设其中喜欢数学的女生人数为
,求
的分布列与期望.
下面的临界表供参考:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(参考公式:
,其中
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现从A,B、C,D,E五人中选取三人参加一个重要会议,五人中每个人被选中的机会均相等,求:
(1)A和B都被选中的概率;
(2)A和B至少有一个被选中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
过点
,且短轴长为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
作
轴的垂线
,设点
为第四象限内一点且在椭圆
上(点
不在直线
上),点
关于
的对称点为
,直线
与椭圆
交于另一点
.设
为坐标原点,判断直线
与直线
的位置关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com