精英家教网 > 高中数学 > 题目详情
f(x)=|x-3|+|x|+|x-5|+|x+7|+|x+4|,求此函数的值域.
考点:函数的值域
专题:分类法
分析:对自变量x取值进行讨论,去绝对值,再求值域.
解答: 解:f(x)=
-5x-3 (x≤-7)
-3x+11 (-7<x≤-4)
-x+19 (-4<x≤0)
x+19 (0<x≤3)
3x+13 (3<x≤5)
5x+3 (x>5)
,∵f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,
∴f(x)≥19,即函数的值域为[19,+∞).
故答案为:[19,+∞).
点评:函数的图象是连续不断的,所以在后面不需要在每一段上求出y的范围,再求并集,直接根据单调性求就行.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知定点F1(-2,0),F2(2,0),动点N满足|
ON
|=1(O为坐标原点),
F1M
=
2NM
MP
MF2
(λ∈R),
F1M
PN
=0,求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

焦点在y轴上的双曲线的一条渐近线方程是x-
3
y=0,此双曲线的离心率为(  )
A、
3
B、
2
3
3
C、2
D、
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,O为坐标原点,点A(2,0),将向量
OA
绕点O按逆时针方向旋转
π
3
后得向量
OB
,若向量
a
满足|
a
-
OA
-
OB
|=1
,则|
a
|
的最大值是(  )
A、2
3
-1
B、2
3
+1
C、3
D、
6
+
2
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,且a1=2,a3=6.
(1)求数列{an}的通项公式;
(2)设数列{
1
Sn
}
的前n项和为Tn,求T2013的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)经过点(1,20),其导函数f′(x)=4x-22.数列{an}的前n项和为Sn,点(n,Sn)(n∈N+)均在函数y=f(x)的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{|an|}前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB是的⊙O直径,CB与⊙O相切于B,E为线段CB上一点,连接AC、AE分别交⊙O于D、G两点,连接DG交CB于点F.
(Ⅰ)求证:C、D、G、E四点共圆.
(Ⅱ)若F为EB的三等分点且靠近E,EG=1,GA=3,求线段CE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

请设计算法框图,要求输入自变量x的值,输出函数f(x)=
-x+1,x≥0
x+3,x<0
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-2-2(a>0且a≠1)的图象恒过定点A(m,n),则不等式组
mx+ny+2≥0
8x-y-4≤0
x≥0,y≥0
所表示的平面区域的面积是
 

查看答案和解析>>

同步练习册答案