精英家教网 > 高中数学 > 题目详情
如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使得平面ABEF⊥平面EFDC.
(Ⅰ) 当BE=1,是否在折叠后的AD上存在一点P,使得CP∥平面ABEF?若存在,求出P点位置,若不存在,说明理由;
(Ⅱ) 设BE=x,问当x为何值时,三棱锥A-CDF的体积有最大值?并求出这个最大值.
考点:与二面角有关的立体几何综合题
专题:综合题,空间位置关系与距离
分析:(Ⅰ)根据CP∥平面ABEF的性质,建立条件关系即可得到结论.
(Ⅱ)设BE=x,根据三棱锥的体积公式即可得到结论.
解答: 解:(Ⅰ) 若存在P,使得CP∥平面ABEF,此时λ=
3
2

证明:当λ=
3
2
,此时
AP
AD
=
3
5

过P作MP∥FD,与AF交M,则
MP
FD
=
3
5

又PD=5,故MP=3,
∵EC=3,MP∥FD∥EC,
∴MP∥EC,且MP=EC,故四边形MPCE为平行四边形,
∴PC∥ME,
∵CP?平面ABEF,ME?平面ABEF,
故答案为:CP∥平面ABEF成立.
(Ⅱ)∵平面ABEF⊥平面EFDC,ABEF∩平面EFDC=EF,AF⊥EF,
∴AF⊥平面EFDC,
∵BE=x,∴AF=x,(0<x<4),FD=6-x,
故三棱锥A-CDF的体积V=
1
3
×
1
2
×2×(6-x)x
=-
1
3
(x-3)2+3

∴x=3时,三棱锥A-CDF的体积V有最大值,最大值为3.
点评:本题主要考查直线和平面平行的性质和判定,以及三棱锥体积的计算,考查学生的推理能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若关于x的不等式a2-4+4x-x2>0成立时,不等式|x2-4|<1成立,则正数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,下列表达式为常数的是(  )
A、sin(A+B)+sinC
B、cos(B+C)-cosA
C、tan
A+B
2
•tan
C
2
D、cos
B+C
2
•tan
A
2

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=
cos2x-sin2x
的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)如图1,在四面体ABCD中,平行于AB,CD的平面β截四面体所得截面为EFGH.

(ⅰ)若AB=a,CD=b (a>b),求截面EFGH的周长的范围.
(ⅱ)如果AB与CD所成角为θ,AB=a,CD=b是定值,当E在AC何处时?截面EFGH的面积最大,最大值是多少?
(2)如图2,若点M为四面体ABCD底面△BCD的重心,任意作一平行于底面的截面分别与侧棱AB,AC,AD交于B1,C1,D1与AM交于点M1,试探求:
AB
AB1
+
AC
AC1
+
AD
AD1
=x
AM
AM1
中x的值,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

中国航母“辽宁舰”是中国第一艘航母,“辽宁”号以4台蒸汽轮机为动力,为保证航母的动力安全性,科学家对蒸汽轮机进行了技术改进,并增加了某项新技术,该项新技术要进入试用阶段前必须对其中的三项不同指标甲、乙、丙进行量化检测.假设该项新技术的指标甲、乙、丙独立通过检测合格的概率分别为
3
4
2
3
1
2
,指标甲、乙、丙合格分别记为4分、2分、4分,某项指标不合格记为0分,各项指标检测结果互不影响.
(1)求该项技术量化得分不低于8分的概率;
(2)记该项新技术的三个指标中被检测合格的指标个数为随机变量X,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=x2+ax+b.对任意实数x,都存在y,使得f(y)=f(x)+y,则a的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x、y满足约束条件
2x-y≤2
x-y≥-1
x+y≥1
,则x2+y2的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1,2),
b
=(1,1),且向量
a
a
+m
b
的夹角为锐角,则m的取值范围为
 

查看答案和解析>>

同步练习册答案