精英家教网 > 高中数学 > 题目详情
精英家教网已知抛物线C:x2=2py(p为正常数)的焦点为F,过F做一直线l交C于P,Q两点,点O为坐标原点.
(1)若△POQ的面积记为S,求
S2|PQ|
的值;
(2)若直线l垂直于y轴,过点Q做关于直线l的对称的两条直线l1,l2分别交抛物线C于M,N两点,证明:直线MN斜率等于抛物线在点Q处的切线斜率.
分析:(1)显然直线l斜率存在,F(0,
p
2
)
,设l:y=kx+
p
2
代入代入抛物线的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用弦长公式即可求得求
S2
|PQ|
的值,从而解决问题.
(2)不妨设P(-p,
p
2
)
Q(p,
p
2
)
,利用直线与抛物线的交点坐标求得点M,N的坐标xM,xN再利用直线的斜率公式求出直线MN的斜率,及抛物线在点Q处的切线斜率即可得到证明.
解答:解(1)显然直线l斜率存在,F(0,
p
2
)

l:y=kx+
p
2
代入C:x2=2py得x2-2pkx-p2=0,x1+x2=2pk,x1x2=-p2,(2分)
求得弦长|PQ|=2p(1+k2),原点到直线l距离
p
2
1+k2
,(2分)
S2=
1
4
•(
p
2
1+k2
)2|PQ|2
,所以
S2
|PQ|
=
p3
8
(2分)
(2)不妨设P(-p,
p
2
)
Q(p,
p
2
)

l1:y=k1(x+p)+
p
2
代入C:x2=2py
得x2-2pk1x-2p2k1-p2=0,xPxM=-2k1p2-p2
所以xM=2k1p+p,同理xN=2k2p+p,(2分)k1+k2=0,
kMN=
yM-yN
xM-xN
=
xM+xN
2p
=1
,(2分)
抛物线在点Q处的切线斜率y′=
2x
2p
|
x=p
=1=kMN
,得证(2分)
点评:当直线与圆锥曲线相交时,涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化,同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C:x2=2py(p>0),其焦点F到准线的距离为
12

(1)试求抛物线C的方程;
(2)设抛物线C上一点P的横坐标为t(t>0),过P的直线交C于另一点Q,交x轴于M,过点Q作PQ的垂线交C于另一点N,若MN是C的切线,求t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=
12
y
和定点P(1,2),A、B为抛物线C上的两个动点,且直线PA和PB的斜率为非零的互为相反数.
(I)求证:直线AB的斜率是定值;
(II)若抛物线C在A、B两点处的切线相交于点M,求M的轨迹方程;
(III)若A′与A关于y轴成轴对称,求直线A′B与y轴交点P的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=2py,过点A(0,4)的直线l交抛物线C于M,N两点,且OM⊥ON.
(1)求抛物线C的方程;
(2)过点N作y轴的平行线与直线y=-4相交于点Q,若△MNQ是等腰三角形,求直线MN的方程.K.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=ay(a>0),斜率为k的直线l经过抛物线的焦点F,交抛物线于A,B两点,且抛物线上一点M(2
2
 , m) (m>1)
到点F的距离是3.
(Ⅰ)求a的值;
(Ⅱ)若k>0,且
AF
=3
FB
,求k的值.
(Ⅲ)过A,B两点分别作抛物线的切线,这两条切线的交点为点Q,求证:
AB
 • 
FQ
=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=2my(m>0)和直线l:y=x-m没有公共点(其中m为常数).动点P是直线l上的任意一点,过P点引抛物线C的两条切线,切点分别为M、N,且直线MN恒过点Q(1,1).
(1)求抛物线C的方程;
(2)已知O点为原点,连接PQ交抛物线C于A、B两点,求
|PA|
|
PB|
-
|
QA|
|
QB|
的值.

查看答案和解析>>

同步练习册答案