精英家教网 > 高中数学 > 题目详情
已知函数,g(x)=ax3+cx2+bx+d都是奇函数,其中a,b,c,d∈Z,且f(1)=2,f(2)<3,
(1)求a,b,c,d的值;
(2)求证:g(x)在R上是增函数.
【答案】分析:(1)由题意可得f(-x)=-f(x),g(-x)=-g(x)可求c=d=0
由f(1)==2及f(2)=<3,a,b,c,d∈Z,可求
(2)由(1)可得函数g(x)=x3+x,任取x1,x2∈R,且x1<x2,,利用单调性的定义,只要作差判断g(x2)>g(x1),即可 证明
解答:解:(1)因为函数,g(x)=ax3+cx2+bx+d都是奇函数,
所以f(-x)=-f(x),

解得c=0…(1分)
由g(-x)=-g(x)可得-ax3+cx2-bx+d=-ax3-cx2-bx-d
∴d=0…(2分)
,g(x)=ax3+bx
由f(1)==2得a=2b-1,…(3分)
代入f(x)中得
∵f(2)=<3,即
,所以b>0,由此可解得:…(4分)
考虑到a,b,c,d∈Z,所以b=1,所以a=2b-1=1,…(5分)
综上知:a=1,b=1,c=0,d=0.…(6分)
证明(2)∵a=1,b=1,c=0,d=0,所以函数g(x)=x3+x,
任取x1,x2∈R,且x1<x2,…(1分)

∵x2-x1>0,,(如中间没配方,则-2分)
∴g(x2)>g(x1),
∴g(x)在R上是增函数.…(4分)
点评:本题 主要考查了利用奇函数的定义及函数性质求解函数的解析式,函数的单调性定义在证明中的应用,属于中档试题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=g(x)与f(x)=loga(x+1)(a>1)的图象关于原点对称.
(1)写出y=g(x)的解析式;
(2)若函数F(x)=f(x)+g(x)+m为奇函数,试确定实数m的值;
(3)当x∈[0,1)时,总有f(x)+g(x)≥n成立,求实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=G(x)的图象过原点,其导函数为y=f(x),函数f(x)=3x2+2bx+c且满足f(1-x)=f(1+x).
(1)若f(x)≥0,对x∈[0,3]恒成立,求实数c的最小值.(2)设G(x)在x=t处取得极大值,记此极大值为g(t),求g(t)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=g(x)的图象与函数f(x)=(x-1)2(x≤0)的图象关于直线y=x对称,则函数g(x)的解析式为g(x)=
-
x
+1
(x≥1)
-
x
+1
(x≥1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=g(x)是定义在R上的奇函数,当x>0时,g(x)=log2x,函数f(x)=4-x2,则函数f(x)•g(x)的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(x)+2f(
1x
)=3x,求f(x)的解析式;
(2)已知函数y=g(x)定义域是[-2,3],求y=g(x+1)的定义域.

查看答案和解析>>

同步练习册答案