【题目】已知幂函数
满足
.
(1)求函数
的解析式;
(2)若函数
,是否存在实数
使得
的最小值为0?若存在,求出
的值;若不存在,说明理由;
(3)若函数
,是否存在实数
,使函数
在
上的值域为
?若存在,求出实数
的取值范围;若不存在,说明理由.
【答案】(1)
;(2)存在
使得
的最小值为0;(3)
.
【解析】试题分析:(1)由
为幂函数可得
,解得
或
,经验证
。(2)令
,则
,设
,则将问题转化为函数
在
上的最小值是否为0的问题。根据对称轴
与区间
的关系求解,可得
满足题意。(3)由题意得
,且
在定义域内为单调递减函数,若存在实数a,b满足题意,则可得
,由②-①消去n得
,从而
,将③代入②得
,再令
,由
得
,所以将问题转化为求
在
上的取值范围,根据二次函数的知识可得
。
试题解析:
(1)∵
是幂函数,
∴
,
解得
或
,
当
时,
,不满足
,
当
时,
,满足
,
∴![]()
∴
。
(2)令
,则
,
设
,
①当
,即
时,由题意得
,
解得
;
②当
,即
时,由题意得
,
解得
(舍去);
③当
,即
时,由题意得
,
解得
(舍去)
综上存在
使得
的最小值为0。
(3)由题意得
,
∴
在定义域内为单调递减函数;
若存在实数
,使函数
在
上的值域为
,
则
,
由②-①,得
,
∴
,
将③代入②得,
,
令
,
∵
,
∴
,
又
,故在区间
上单调递减,
∴
。
∴存在实数
,使函数
在
上的值域为
且实数
的取值范围为
.
科目:高中数学 来源: 题型:
【题目】已知f(x)
sin(2x
).
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的最大值,并写出取最大值时自变量x的集合;
(3)求函数f(x)在x∈[0,
]上的最值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.小华同学利用刘徽的“割圆术”思想在半径为1的圆内作正
边形求其面积,如图是其设计的一个程序框图,则框图中应填入、输出
的值分别为( )
(参考数据:
)
![]()
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种植基地将编号分别为1,2,3,4,5,6的六个不同品种的马铃薯种在如图所示的
A | B | C | D | E | F |
这六块实验田上进行对比试验,要求这六块实验田分别种植不同品种的马铃薯,若种植时要求编号1,3,5的三个品种的马铃薯中至少有两个相邻,且2号品种的马铃薯不能种植在A、F这两块实验田上,则不同的种植方法有 ( )
A. 360种 B. 432种 C. 456种 D. 480种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆M的方程为x2+y2-2x-2y-6=0,以坐标原点O为圆心的圆O与圆M相切.
(1)求圆O的方程;
(2)圆O与x轴交于E,F两点,圆O内的动点D使得DE,DO,DF成等比数列,求![]()
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着电商的快速发展,快递业突飞猛进,到目前,中国拥有世界上最大的快递市场.某快递公司收取快递费的标准是:重量不超过
的包裹收费10元;重量超过
的包裹,在收费10元的基础上,每超过
(不足
,按
计算)需再收5元.
该公司将最近承揽的100件包裹的重量统计如下:
![]()
公司对近60天,每天揽件数量统计如下表:
![]()
以上数据已做近似处理,并将频率视为概率.
(1)计算该公司未来5天内恰有2天揽件数在101~300之间的概率;
(2)①估计该公司对每件包裹收取的快递费的平均值;
②根据以往的经验,公司将快递费的三分之一作为前台工作人员的工资和公司利润,其余的用作其他费用.目前前台有工作人员3人,每人每天揽件不超过150件,日工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,若你是决策者,是否裁减工作人员1人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】汽车急刹车的停车距离与诸多因素有关,其中最为关键的两个因素是驾驶员的反应时间和汽车行驶的速度.设d表示停车距离,
表示反应距离,
表示制动距离,则
.下图是根据美国公路局公布的试验数据制作的停车距离示意图,对应的汽车行驶的速度与停车距离的表格如下图所示
![]()
序号 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(1)根据表格中的数据,建立停车距离与汽车速度的函数模型.可选择模型一:
或模型二:
(其中v为汽车速度,a,b
(2)通过计算
时的停车距离,分析选择哪一个函数模型的拟合效果更好.
(参考数据:
;
;
.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分10分)一位网民在网上光顾某淘宝小店,经过一番浏览后,对该店铺中的
五种商品有购买意向.已知该网民购买
两种商品的概率均为
,购买
两种商品的概率均为
,购买
种商品的概率为
.假设该网民是否购买这五种商品相互独立.
(1)求该网民至少购买4种商品的概率;
(2)用随机变量
表示该网民购买商品的种数,求
的概率分布和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com