精英家教网 > 高中数学 > 题目详情
15.下列有关几何体的命题正确的是(  )
A.有两个面平行,其余各面都是平行四边形的几何体是棱柱
B.用一个平面去截棱锥,底面和截面之间的部分组成的几何体是棱台
C.用一个平面去截圆锥,截面曲线一定是圆
D.正方体的内切球直径是这个正方体的棱长

分析 对四个命题分别进行判断,即可得出结论.

解答 解:A,有两个面平行,其余各面都是平行四边形的几何体是棱柱,此命题不成立,可将两个底面全等的两个棱柱叠加,所得的几何体符合条件但不是棱柱,不正确;
B,用一个平行于底面的平面去截棱锥,底面和截面之间的部分组成的几何体是棱台,不正确;
C,用一个平行于底面的平面去截圆锥,截面曲线一定是圆,不正确;
D,正方体的内切球直径是这个正方体的棱长,正确.
故选:D.

点评 本题考查棱柱、棱台的结构特征,解题的关键是理解棱柱、棱台的定义及其几何特征,空间想像能力对正确解本题很重要.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知方程x2+2mx+2m2-3=0有一根大于2,另一根比2小,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=f(x)与y=g(x)的图象如下图,则函数y=f(x)•g(x)的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知a,b∈R+,则(a+$\frac{1}{a}$)•(b+$\frac{1}{b}$)的最小值是(  )
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.等差数列{an}的前n项和为Sn,且a4-a2=8,a3+a5=26,则Sn的最小项是1;若记Tn=$\frac{{S}_{n}}{{n}^{2}}$,如果存在正整数M,使得对一切正整数n,Tn≤M都成立.则M的最小值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设x∈R,向量$\overrightarrow a$=(3,2),$\overrightarrow b$=(x,4),且$\overrightarrow a∥\overrightarrow b$,则x=(  )
A.-6B.6C.$-\frac{8}{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列不等式中正确的是(  )
A.sin$\frac{5}{7}$π>sin$\frac{4}{7}$πB.tan$\frac{15}{8}$π>tan(-$\frac{π}{7}$)C.sin(-$\frac{π}{5}$)>sin(-$\frac{π}{6}$)D.cos(-$\frac{3}{5}$π)>cos(-$\frac{9}{4}$π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设命题p:函数y=2sin(x+$\frac{π}{2}}$)是奇函数;命题q:函数y=cosx的图象关于直线x=$\frac{π}{2}$对称.则下列判断正确的是(  )
A.p为真B.?q为假C.p∧q为假D.p∨q为真

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,点O是BC的中点,过点O的直线分别与边AB、AC所在直线交于不同的两点M、N,若向量$\overrightarrow{AB}=m\overrightarrow{AM}$,$\overrightarrow{AC}=n\overrightarrow{AN}(m,n∈R)$,则mn的最大值为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

同步练习册答案