精英家教网 > 高中数学 > 题目详情
如图,A,B是函数y=ax(a>1)在y轴右侧图象上的两点,分别过A,B作y轴的垂线与y轴交于E,F两点,与函数y=ex的图象交于C,D两点,且A是CE的中点.
(Ⅰ)求a的值;
(Ⅱ)当直线BC与y轴平行时,设B点的横坐标为x,四边形ABDC的面积为f(x),求f(x)的解析式;
(Ⅲ)若对任意的正数b,关于x的不等式
2f(x)
ex-1
3exln
xb
em
在区间[1,e]上恒成立,求实数m的取值范围.
分析:(I)设A点坐标为(x,ax),根据A是CE的中点,CE垂直于y轴,可得ax=e2x,进而根据指数的运算性质得到a的值;
(Ⅱ)当直线BC与y轴平行时,BC两点的横坐标相等,四边形ABDC为梯形,代入梯形面积公式,可得f(x)的解析式;
(Ⅲ)关于x的不等式
2f(x)
ex-1
3exln
xb
em
在区间[1,e]上恒成立,即m<blnx-
x
2
在区间[1,e]上恒成立,构造函数后,将问题转化为函数的最值问题,可得答案.
解答:解:(Ⅰ)设A点坐标为(x,ax),
∵A是CE的中点,
∴C点坐标为(2x,e2x),
又∵CE垂直于y轴,
∴ax=e2x
即a=e2,…(4分)
(Ⅱ)由已知可设A,B,C,D各点的坐标分别为,A(x1,y1),B(x2,y2),C(x3,y1),D(x4,y2
当直线BC与y轴平行时,有x2=x3=2x1=x,x4=2x2=4x1=2x,
∴f(x)=
1
2
[(x3-x1)+(x4-x2)](y2-y1)=
3x
4
(ex-1)ex,(x>0)
(III)若不等式
2f(x)
ex-1
3exln
xb
em
在区间[1,e]上恒成立,
则m<blnx-
x
2
在区间[1,e]上恒成立,
令h(x)=blnx-
x
2
,则h′(x)=
2b-x
2x
(x>0)
当x∈(0,2b)时,h′(x)>0,h(x)是增函数;
当x∈(2b,+∞)时,h′(x)<0,h(x)是减函数;
(1)当0<2b≤1,即0<b≤
1
2
时,h(x)在区间[1,e]上是减函数;
故当x=e时,h(x)取最小值b-
e
2

(2)当1<2b<e,即
1
2
<b<
e
2
时,h(x)在区间[1,2b]上是增函数,在[2b,e]上是减函数;
又由h(1)=-
1
2
,h(e)=b-
e
2
,h(1)-h(e)=
e
2
-
1
2
-b
故①若
1
2
<b<
e
2
-
1
2
,则当x=e时,h(x)取最小值b-
e
2

故②若
e
2
-
1
2
<b<
e
2
,则当x=1时,h(x)取最小值-
1
2

(3)当2b≥e,即b≥
e
2
时,h(x)在区间[1,e]上是增函数;
故当x=1时,h(x)取最小值-
1
2

综上区间[1,e]上,h(x)min=
b-
e
2
,0<b≤
e
2
-
1
2
-
1
2
,b>
e
2
-
1
2

故当0<b≤
e
2
-
1
2
时,m<b-
e
2
,当b>
e
2
-
1
2
时,m<-
1
2

又∵对任意正实数bm<blnx-
x
2
在区间[1,e]上恒成立,
故m≤-
e
2

即实数m的取值范围为(-∞,-
e
2
]
点评:本题考查的知识点是利用研究函数的单调性,函数恒成立问题,构造新函数,将恒成立问题转化为求函数最值问题,是解答此类问题的常用方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,A、B是单位圆O上的点,C、D分别是圆O与x轴的两个交点,△ABO为正三角形.
(1)若点A的坐标为(
3
5
4
5
)
,求cos∠BOC的值;
(2)若∠AOC=x(0<x<
3
),四边形CABD的周长为y,试将y表示成x的函数,并求出y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏二模)如图,已知A、B是函数y=3sin(2x+θ)的图象与x轴两相邻交点,C是图象上A,B之间的最低点,则
AB
AC
=
π2
8
π2
8

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A,B是单位圆上的两个质点,B点坐标为(1,0),∠BOA=60°,质点A以1弧度/秒的角速度按逆时针方向在单位圆上运动;质点B以1弧度/秒的角速度按顺时针方向在单位圆上运动,过点A作AA1⊥y轴于A1,过点B作BB1⊥y轴于B1
(1)求经过1秒后,∠BOA的弧度数;
(2)求质点A,B在单位圆上第一次相遇所用的时间;
(3)记A1B1的距离为y,请写出y与时间t的函数关系式,并求出y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•龙岩二模)对任意实数a、b,若a*b的运算原理如图所示,x1是函数y=
1x
-1
的零点,y1是二次函数y=x2-2x+3在[0,3]上的最大值,则x1*y1=
7
7

查看答案和解析>>

同步练习册答案